
www.manaraa.com

A Systemati
 Approa
h to the Design and Analysis ofLinear Algebra AlgorithmsbyJohn Andrew Gunnels, B.S., M.S.
DissertationPresented to the Fa
ulty of the Graduate S
hool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDo
tor of Philosophy

The University of Texas at AustinDe
ember 2001

www.manaraa.com

Abstra
tOver the last two de
ades, mu
h progress has been made in the area of the high-performan
e sequential and parallel implementation of dense linear algebra operations. Atwhat time
an we
on�dently state that we truly understand this problem area and whatform might eviden
e in support of this assertion take? It is our thesis that if we fo
us thisquestion on the software ar
hite
ture of libraries for dense linear algebra operations, we
an
laim to have rea
hed the point where, for a restri
ted
lass of problems, we understandthis area. In this dissertation, we provide eviden
e in support of this assertion by outlininga systemati
 and partially automated approa
h to the derivation and high-performan
eimplementation of a large
lass of dense linear algebra operations.We have arrived at a
on
lusion that the answer is to apply formal derivation te
h-niques from Computing S
ien
e to the development of high-performan
e linear algebra li-braries. The resulting approa
h has resulted in an aestheti
ally pleasing,
oherent
ode thatfa
ilitates performan
e analysis, intelligent modularity, and the enfor
ement of program
or-re
tness via assertions. In this dissertation, we illustrate this observation by looking at thedevelopment of the Formal Linear Algebra Methods Environment (FLAME) for implement-ing linear algebra algorithms.We believe that traditional methods of implementation do not re
e
t the naturalmanner in whi
h an algorithm is either
lassi�ed or derived. To remedy this dis
repan
y,we propose the use of a small set of abstra
tions that
an be used to design and implementlinear algebra algorithms in a simple and straightforward manner. These abstra
tions maybe expressed in a s
ript language that
an be
ompiled into eÆ
ient exe
utable
ode. Weextend this approa
h to parallel implementations without adding substantial
omplexity.It should also be possible to translate these s
ripts into analyti
al equations thatre
e
t their performan
e pro�les. These pro�les may allow software designers to systemat-i
ally optimize their algorithms for a given ma
hine or to meet a parti
ular resour
e goal.Given the more systemati
 approa
h to deriving and implementing algorithms that is fa
ili-tated by better abstra
tion and
lassi�
ation te
hniques, this sort of analysis
an be shownto be systemati
ally derivable and automated.

www.manaraa.com

Contents
Chapter 1 Introdu
tion 11.1 Motivation . 21.2 Our Approa
h . 31.2.1 Re
ent Insights . 31.2.2 A Solution: The Big Pi
ture . 41.3 Resear
h Contributions . 71.3.1 Systematizing Development . 71.3.2 Domain-Spe
i�
 Languages . 71.3.3 Automated Code and Analysis Generation 81.4 Related Work: Integrated Systems . 81.4.1 MultiMATLAB . 81.4.2 PSI . 91.4.3 FALCON . 91.4.4 Broadway . 91.5 Overview of Dissertation . 101.5.1 Design: FLAME (Chapter 2) . 101.5.2 A Domain-Spe
i�
 Language: PLAWright (Chapter 3) 101.5.3 Code Generation (Chapter 4) . 111.5.4 Performan
e (Chapter 5) . 111.5.5 Con
lusion (Chapter 6) . 11Chapter 2 Systemati
 Derivation of Variants 122.1 Introdu
tion . 122.2 Overview . 132.3 Ba
kground . 132.3.1 The Corre
tness of Loops . 152.4 A Case Study: LU Fa
torization . 162.4.1 A
lassi
al derivation . 172.4.2 But what is the loop-invariant? . 182.4.3 Lazy algorithm . 212.4.4 Row-lazy algorithm . 261

www.manaraa.com

2.4.5 Column-lazy algorithm . 262.4.6 Row-
olumn-lazy algorithm . 282.4.7 Eager algorithm . 282.5 A Re
ipe for Deriving Algorithms . 292.6 En
oding the Algorithm in C . 302.6.1 Classi
 implementation with the BLAS 302.6.2 The algorithm is the
ode . 302.6.3 Positive features of the FLAME approa
h 342.6.4 But what about Fortran? . 352.6.5 Proving the implementation
orre
t 352.7 LU Fa
torization with Partial Pivoting . 362.7.1 Notation . 362.7.2 Derivation of the invariants . 372.7.3 Derivation of the eager algorithm . 382.7.4 Implementation . 412.8 Experiments . 422.8.1 Produ
tivity experiment . 422.8.2 A

essibility experiment . 432.8.3 Performan
e experiment . 432.9 Related Work . 452.10 Chapter Summary . 46Chapter 3 From Variant to Multiple Versions 483.1 Motivation . 483.1.1 Coding Matrix Algorithms: The Sequential World 483.1.2 Coding Matrix Algorithms: Extending to Parallel 493.1.3 Proposed Solution . 503.1.4 Where PLAWright Fits In . 543.2 Issues . 543.2.1 Abstra
tion . 553.2.2 A Domain-Spe
i�
 Language for Linear Algebra 603.2.3 Parallel Spe
ializations and Extensions 643.3 Related Work . 683.3.1 Library-Based Abstra
tions . 683.3.2 Programming Environments . 693.4 Chapter Summary . 69Chapter 4 Automated Code Generation 704.1 Motivation for Automating Library Linkage 714.2 Issues in Library Linkage . 724.2.1 A (Fi
titious) Linking Library . 724.2.2 Redu
ing a S
ript . 764.2.3 Annotating a Library . 772

www.manaraa.com

4.2.4 Produ
ing Output . 774.3 Implementation: An Automated Library . 774.3.1 Tools Employed . 784.3.2 PLAPACK: A Target Library . 784.3.3 Compiling PLAWright . 794.3.4 Annotating the Library: Fun
tionality Provided 804.3.5 Produ
ing Output . 824.3.6 A Realized Constru
tion . 824.3.7 Libraries . 844.3.8 Library Binding . 854.4 Experimental Results . 854.4.1 Generating Parallel LU Fa
torization 854.5 Chapter Summary . 91Chapter 5 Automati
 Analysis of an Implementation 925.1 Motivation . 925.2 Issues . 965.2.1 Why Performan
e Is Important . 965.2.2 Why Performan
e Analysis Is Important 965.2.3 Convenien
e vs. Performan
e . 985.2.4 Traditional Approa
hes . 995.2.5 Problems with Traditional Approa
hes 995.2.6 A New Approa
h . 995.2.7 Coupling Code and Performan
e . 1005.3 Contributions of the Systemati
 Underpinnings 1035.3.1 Modularity of the Analyti
 Harness 1045.4 Implementation: Automated Analysis . 1065.4.1 An Analysis-Ready S
ript . 1065.4.2 Explanation of S
ript Extensions and Line-Cost Estimates 1065.4.3 Analyti
al Result . 1085.4.4 The Use ofMathemati
a Module[℄s . 1095.4.5 Performan
e Estimates: Dis
rete Formulae 1095.4.6 Closed-Form Expressions . 1105.4.7 More Pra
ti
al Con
erns . 1105.4.8 Load Balan
e . 1115.5 Related Work . 1125.5.1 Monolithi
 Analysis . 1125.5.2 Ad-ho
/Component Sums Based Analysis 1125.6 Experimental Results . 1135.6.1 Automated Analysis Generation . 1135.6.2 Analysis vs. Witnessed Performan
e 1135.6.3 Experiments: A Summary . 1173

www.manaraa.com

5.7 Chapter Summary . 120Chapter 6 Con
lusion 1216.1 Design: FLAME . 1216.2 Language: PLAWright . 1226.3 Automated Code Generation: PLANalyzer 1236.4 Automated Analysis: plANALYZER . 1236.5 An Integrated System: FLAME and PLANALYZER 124Bibliography 125Vita 131

4

www.manaraa.com

Chapter 1Introdu
tionOur
laim is that it is possible to
reate a system wherein one
an
ode dense linear algebraroutines in a very high-level, domain-spe
i�
 language and still attain near-peak perfor-man
e on distributed-memory parallel ar
hite
tures. This dissertation provides eviden
esupporting this
laim and des
ribes the impli
ations of su
h a system. Our thesis
an beexpressed as follows:� We have dis
overed how to systemati
ally derive a restri
ted
lass of linear algebraalgorithms using formal derivation te
hniques.� For this
lass of algorithms,
ompiler tools
an be employed to redu
e a domain-spe
i�
program to a list of operational requirements.� In this domain, requirements
an be paired to the fun
tionality provided by a set oflibrary routines if the annotations used to express those servi
es are
ompatible withthe requirements.� For this
lass of algorithms, performan
e estimates of
onstru
ted routines
an bemade highly a

urate if the underlying library is layered
orre
tly and the languageused to des
ribe performan
e
hara
teristi
s is suitably
exible.The domain under study in this dissertation is restri
ted to a subset of dense linearalgebra problems. This
lass in
ludes the level-3 BLAS routines [25, 39℄, matrix fa
torizationroutines [44℄, and kernels involved in
ontrol theory [65, 64℄. While this set of algorithmsdoes not
over the gamut of dense linear algebra, it does
omprise a useful,
ore set.This
hapter begins with an histori
al overview that summarizes the evolution oflinear algebra software libraries. This is followed by a brief treatment of the insights that ledus to the work presented here. We then explain how this work advan
es the state-of-the-art.After itemizing the
ontributions of our resear
h, we present a summary of other resear
he�orts whose goals are similar to our own. The �nal se
tion of this
hapter presents anoutline of the dissertation. 1

www.manaraa.com

1.1 MotivationAdvan
es in software engineering for s
ienti�
 appli
ations have often been led by te
h-niques developed for libraries for dense linear algebra operations. The �rst su
h pa
kageto a
hieve widespread use and to embody new te
hniques in software engineering was EIS-PACK [68℄. The mid-1970s witnessed the introdu
tion of the Basi
 Linear Algebra Subpro-grams (BLAS) [55℄. This version of the BLAS was a set of ve
tor operations (now known aslevel-1 BLAS) that allowed libraries to attain high performan
e on
omputers possessing a
at memory while remaining portable between platforms. This library and its well-de�nedinterfa
e simultaneously enhan
ed
ode modularity and readability. The �rst su

essfullibrary to exploit these BLAS was LINPACK [22℄.By the late 1980s, it was re
ognized that in order to over
ome the gap between pro-
essor and memory performan
e on modern mi
ropro
essors it was ne
essary to reformulatematrix operations in terms of level-2 (matrix-ve
tor multipli
ation) and level-3 (matrix-matrix multipli
ation-like) BLAS operations [26, 25℄. First released in the early 1990s,LAPACK [5℄ is a high-performan
e pa
kage for linear algebra operations. LAPACK is aportable library that provides a fun
tionality that is a superset of both LINPACK and EIS-PACK. The LAPACK library heavily utilizes the level-3 BLAS and evin
es high performan
eon essentially all sequential and shared-memory ar
hite
tures.A major simpli�
ation in the implementation of the level-3 BLAS stemmed fromthe observation that they
an be
ast in terms of optimized matrix-matrix multipli
ation [1,47, 52℄. The performan
e of the resulting libraries was
omparable to that of the optimized,assembly-
oded, vendor-supplied BLAS in many
ases. Further, the implementations weremore portable than previous BLAS libraries be
ause they were written in Fortran. In those
ases where the
ode was not performan
e transportable (i.e. where these BLAS did not
ompile into eÆ
ient assembly
ode), the ideas behind this resear
h simpli�ed the task ofhand-
oding the level-3 BLAS library.With the advent of distributed-memory parallel ar
hite
tures, LAPACK was nolonger suÆ
ient for the needs of high-performan
e s
ienti�

omputing. LAPACK workedwell with high-performan
e shared-memory systems, but was not written to be
ompatiblewith distributed-memory ar
hite
tures. Distributed-memory ar
hite
tures depend upon theappli
ations and libraries to expli
itly manage the physi
ally distin
t memories atta
hed tothe
omputational pro
essors (nodes) of the system. Thus, a parallel version of LAPACK,S
aLAPACK [15℄, was developed. A major design goal of the S
aLAPACK proje
t was topreserve and re-use as mu
h
ode from LAPACK as possible. Thus, all layers in the S
aLA-PACK software ar
hite
ture were designed to resemble analogous layers in the LAPACKsoftware ar
hite
ture. This de
ision was motivated by the fa
t that LAPACK had provenitself both robust and eÆ
ient. However, this de
ision
ompli
ated the implementation ofS
aLAPACK. The introdu
tion of data distribution a
ross memories
reated a
ompli
a-tion analogous to that of
reating and maintaining the data stru
tures required for storingsparse matri
es. The mapping from indi
es to matrix element(s) was no longer a simpleone. Combining this
ompli
ation with the monolithi
 stru
ture of the software led to
ode2

www.manaraa.com

that was laborious to
onstru
t and diÆ
ult to maintain.Re
ently, a number of proje
ts have developed software for generating automati-
ally tuned matrix-matrix multipli
ation kernels. These undertakings in
lude the PHiPACproje
t [11℄ and the ATLAS proje
t [76℄.The PHiPAC resear
h e�ort in
luded a
areful analysis of C implementations ofmatrix-matrix multipli
ation. By stru
turing the loops and memory referen
es
arefully,it is possible for a C
ompiler to generate highly eÆ
ient
ode for this algorithm. ThePHiPAC resear
h team produ
ed a software system
apable of generating eÆ
ient BLASkernels through a generate-and-test strategy. This software generator
reated implemen-tations of matrix multipli
ation algorithms that blo
ked matri
es in every reasonable way.By exe
uting these programs and monitoring the resulting performan
e, parameters for ahigh-performan
e matrix multipli
ation implementation
ould be determined.The ATLAS proje
t repa
kaged and simpli�ed the methods developed in
reatingthe PHiPAC system. In addition, the ATLAS system required less time to generate eÆ
ientlinear algebra kernels. This eÆ
ien
y was gained by avoiding PHiPAC's exhaustive sear
h ofthe parameter spa
e involved in determining optimal matrix blo
king sizes. Unfortunately,as this sear
h spa
e was redu
ed through experien
e, not by a theoreti
al model, it issometimes the
ase that ATLAS produ
es
ode with far less than optimal performan
e
hara
teristi
s [42℄.1.2 Our Approa
h1.2.1 Re
ent InsightsThe primary inspiration for mu
h of the work presented in this dissertation
ame from ourexperien
e with the Parallel Linear Algebra Pa
kage (PLAPACK) [74℄. PLAPACK a
hievesa fun
tionality similar to that of S
aLAPACK, targeting the same distributed-memory ar-
hite
tures. In
ontrast to S
aLAPACK, PLAPACK uses an MPI-like [38℄ approa
h to hideindexing and data distribution details.Work related to PLAPACK provided insights that motivated the approa
h presentedin Chapter 2 and Chapter 3 of this do
ument. Raising the level of abstra
tion at whi
h one
odes redu
es the e�ort involved in implementing high-performan
e linear algebra libraryroutines.As we gained more experien
e with PLAPACK, a number of themes kept reappear-ing:� The derivation of algorithms for di�erent linear algebra operations was systemati
.� Similarly, the analysis of the resulting algorithms was systemati
, although tediousand error-prone.� For a given linear algebra operation, di�erent algorithms provided better performan
eas the sizes of operands (matri
es)
hanged [40℄. This makes analysis ne
essary in orderto be able to determine when and understand why di�erent algorithms are superior.3

www.manaraa.com

We dis
overed that, in deriving algorithms for a new operation, we were applying formalderivation methods to the domain of algorithms for dense linear algebra operations. Thisled to our work on the Formal Linear Algebra Methods Environment (FLAME), resear
hdetailed in Chapter 2.Linear algebra libraries are expe
ted to
ontain routines that
an deal with a broadrange of operational tasks and to be written in a form that
an be ported between di�erent
omputational environments. The LAPACK library a
hieves both obje
tives by exploitingthe BLAS. However, the use of libraries su
h as LAPACK has the disadvantages of requiringthe appli
ations programmer to perform time-
onsuming, involved, sour
e
ode optimiza-tions that are often not performan
e portable [50℄. The work presented in Chapter 3 andChapter 4 addresses this problem. By
reating a language that allows the user to programat a level of abstra
tion higher than that of PLAPACK, little library knowledge is requiredof the programmer. An automated
ode generation system a

epts programs written inthis language and produ
es
ode that evin
es superior performan
e on distributed-memory,parallel super
omputers. This is a
hieved by me
hani
ally linking the high-level programsto a fun
tionally-annotated version of the PLAPACK library.A simple model of a distributed-memory parallel system is used for performan
eanalysis in Chapter 5. This model re
e
ts lessons learned while studying the issues relatedto the
reation of high-performan
e matrix-matrix multipli
ation kernels for single pro
essorma
hines with hierar
hi
al memories [42℄. This
ontrasts with
ode generation e�orts su
has PHiPAC and ATLAS, whi
h employ brute for
e to sear
h a parameter spa
e for blo
kingsizes that a

ommodate multiple levels of memory hierar
hy.Together, these experien
es and insights led us to
on
lude that for a subset of denselinear algebra operations, the derivation, implementation, and analysis of parallel algorithmsis now a well-understood and systemati
 pro
ess.1.2.2 A Solution: The Big Pi
tureThe goal of linear algebra
ode produ
tion is to generate eÆ
ient
ode from a
lear state-ment of mathemati
al requirements. Our strategy for a
hieving this obje
tive is depi
tedin Figure 1.1. Spe
i�
ally, it is our aim to repla
e the \Human Expert" of Figure 1.2,whi
h re
e
ts where previous resear
h had led us, with systemati
 te
hniques and auto-mated tools. The term \eÆ
ient"
overs a number of sub-goals in
luding reliability, speed,and transportability. These qualities are widely
onsidered the primary value metri
s ofsu
h
omputer
odes. This dissertation targets the
ommunity of s
ienti�
 library writers.Sin
e one might safely suppose that these resear
hers are mathemati
ians or have strongmathemati
al ba
kgrounds, the
lear statement of mathemati
al requirements is a logi
alstarting point. The mathemati
al spe
i�
ation of the problem must be known in order togenerate
ode to solve that problem. In order to automate a system, this spe
i�
ation,represented by \A = LU" in Figure 1.1, must be made expli
it.The uni�ed approa
h to the design and development of dense linear algebra algo-rithms that is presented in this do
ument should be distinguished from the situation whereindevelopment is ad ho
. When the development and tool sets are
olle
ted, not designed as4

www.manaraa.com

Figure 1.1: The Big Pi
ture: As advan
ed in this dissertationpart of a holisti
 approa
h, they may supply as mu
h baggage as leverage to a problem-solving environment.Development MethodologyGiven a mathemati
al spe
i�
ation of the problem, it is bene�
ial to have a
onsistent,methodologi
al approa
h that enables one to
onstru
t an algorithm that satis�es this spe
-i�
ation. If the approa
h is broadly appli
able, it
an be employed in the
reation of theentire range of routines for a linear algebra library. If this methodology is systemati
, it maybe automated. In this dissertation, we present one su
h approa
h. FLAME is systemati
 innature. In addition, FLAME
an be utilized to generate a number of di�erent algorithms,
alled variants, for the same mathemati
al problem spe
i�
ation.Library Management: A ComposerOne may
reate a number of variants
orresponding to the same mathemati
al spe
i�
ation.In order to automate
ode generation, is useful to link together
omponents that satisfy thesame mathemati
al spe
i�
ation. In the work presented here, they are linked through anno-tations that expose the similarities in their fun
tionality. This is the task of the \Composer."5

www.manaraa.com

Figure 1.2: The Big Pi
ture: As our resear
h group has viewed it.Input to the Composer is written in a high-level s
ript language
alled PLAWright1. S
ripts
ontain both an algorithmi

omponent and the mathemati
al spe
i�
ation satis�ed by thats
ript. By annotating the s
ripts in this manner, the system
an inter
hangeably use thoses
ripts with the same fun
tional
hara
teristi
s.It is a widely held belief that any automated system should allow for expert in-tervention. PLAWright, the language of the Composer, allows for hands-on modi�
ations.These spe
ializations take the form of su
h things as data distribution dire
tives (in the
ontext of parallel ar
hite
tures), fun
tional overrides (for
ing the use a spe
i�
 library
allor
ode segment), and performan
e annotations (indi
ating the
omputational
omplexityof a
omponent). In this dissertation, these spe
ialized forms of a given variant are referredto as s
ript versions. There is a single \vanilla," or plain, s
ript
orresponding to a variant
onstru
ted via FLAME, but there may be many spe
ialized versions of that variant.Code Generation and AnalysisSin
e the goal of the pro
ess under
onsideration involves the produ
tion of eÆ
ient
ode,we
ouple the
ode produ
ed to an analysis pro
edure. By restri
ting our attention to the
onstru
tion of
ode built on top of an existing library, the
reation of su
h an analyti
al1We would like to thank Sam Guyer for both the PLAWright name and a prototypi
al example of thelanguage. 6

www.manaraa.com

engine be
omes a more pre
isely de�ned task.Given a single s
ript and a software library, there may be many ways to ful�ll therequirements of the s
ript with the servi
es provided by the
omponent library routines.It is often the
ase that di�erent
ode instantiations exhibit di�erent
omputational
har-a
teristi
s. It is also often true that no one routine is best for all situations. Di�eringoperand dimensionalities and
hara
teristi
s may make it ne
essary to dynami
ally sele
tfrom many di�erent routines in order to attain
onsistently near-optimal performan
e. Thisis
alled
ode hybridization. It makes sense to
ouple
ode generation and analysis in orderto enable the produ
tion of hybridized
ode that is eÆ
ient a
ross a wide range of probleminstan
es. This dissertation work presents the PLANALYZER, a
oupled
ode-produ
tionand
ode-analysis system.The proof-of-
on
ept implementation des
ribed in this dissertation limits the algo-rithmi
 area to a subset of dense linear algebra, the
omplexity measures to time, and theoutput language to C. However, this system
an be extended to involve other
omplexitymeasures (su
h as memory usage) or to target other languages (su
h as Fortran).1.3 Resear
h Contributions1.3.1 Systematizing DevelopmentWe have made systemati
 the derivation of a
lass of linear algebra algorithms through theuse of simple formal derivation te
hniques. This advan
es the state-of-the-art by bringingformal derivation te
hniques to an area of software ar
hite
ture that has made little use ofthem in the past. Our methodology is referred to as FLAME. Further, we have
reated aregimented stru
ture for the expression of FLAME algorithms. This stru
ture makes expli
itthe similarities and di�eren
es between
losely related algorithmi
 variants. We have
oupledthis with the Formal Linear Algebra Methods Building Environment (FLAMBE)2, whi
hallows one to en
ode the routines in a form that mirrors the resultant FLAME algorithms.FLAMBE
ode
an handle matrix
omputations on both serial and parallel ma-
hines, with porting requiring only minor modi�
ations. Thus, our work eases e�orts re-quired to
onstru
t a library that
ontains routines that share fun
tionality, but addressdi�erent levels of the memory hierar
hy. This
ategory of verti
ally integrated library isuseful in high-performan
e, distributed-memory parallel
omputing.1.3.2 Domain-Spe
i�
 LanguagesWe have re�ned a domain spe
i�
 language,
alled PLAWright, for the expression of denselinear algebra subroutines. We have also veri�ed that algorithms expressed in this language
an be
ompiled into
ode that exe
utes on a parallel ma
hine and into analyti
al
ode thatre
e
ts the
omplexity of the
orresponding exe
utable. Additionally, we have
reated aframework within whi
h impli
it assumptions regarding linear algebra algorithms are made2This library has been referred to as FLAME in other do
umentation [41, 44℄.7

www.manaraa.com

expli
it. Through PLAWright, we have
reated a language that allows for rapid prototypingand optimization, improving upon languages su
h as PLAPACK and MATLAB by raisingthe level of abstra
tion without sa
ri�
ing performan
e.1.3.3 Automated Code and Analysis GenerationWe have
onstru
ted an analyti
al model for homogeneous parallel
omputers that is simple,pre
ise enough to meet our requirements, and appli
able to modern mi
ropro
essors
om-monly used in the area of high-performan
e s
ienti�

omputation. This modeling e�ortprovided us with many insights into the design of a performan
e modeling language.Our system allows an individual, who either la
ks expert knowledge regarding thetarget ar
hite
ture or the underlying libraries, to produ
e routines with admirable perfor-man
e
hara
teristi
s. The system we have
reated a

omplishes this by utilizing expertknowledge, in the form of fun
tional annotations, to
onstru
t a number of
omparableprograms from a single input s
ript. In addition, this system is
apable of analyzing theperforman
e
hara
teristi
s of these implementations in order to fa
ilitate the sele
tion of thebest
ode available from the produ
ed alternatives. Utilizing an analyti
al model representsan approa
h orthogonal to that of
ode generators su
h as PHiPAC and ATLAS.1.4 Related Work: Integrated SystemsBelow is a dis
ussion of work related to \integrated systems" with goals similar to thoseaddressed by the work in this dissertation. In subsequent
hapters, the \Related Work"se
tions in
lude resear
h e�orts that address the more narrow topi
 of that
hapter.1.4.1 MultiMATLABThe MultiMATLAB proje
t attempted to take advantage of a large existing
ode base andan integrated development environment [72℄. The philosophy of the proje
t was analogousto that underlying the S
aLAPACK proje
t [15℄. MultiMATLAB
an utilize a number ofMATLAB pro
esses running on a set of pro
essors. When
oupled with a
ommuni
ationslibrary, this enabled a parallel s
ripting environment. In this environment, a programmer
an exe
ute a s
ript on the master pro
essor and utilize the
omputational power of all ofthe pro
essors in the system.In
ontrast to MultiMATLAB, the system presented in this dissertation addressesthe entire development pro
ess, from algorithmi
 development to
ode generation and anal-ysis. Further, using our system results in
ode that exhibits admirable performan
e
hara
-teristi
s when exe
uted on a distributed-memory, parallel super
omputer.
8

www.manaraa.com

1.4.2 PSIThe PLAPACK-Server Interfa
e (PSI) proje
t [59℄ used an approa
h similar to that ofMultiMATLAB3. Built on the PLAPACK library, the PSI pa
kage allows one to run s
ripts,written in MATLAB [58℄, Mathemati
a [77℄, or HiQ [17℄, on the master pro
essor. Theses
ripts
an use the PLAPACK library to handle the requisite parallel
omputations whilethe system retains the ability to utilize the indi
ated
omputational environment in the
asethat:� PLAPACK does not supply the desired fun
tionality and� The problem
an �t on a single node.Both MultiMATLAB and PSI allow the user to take advantage of the built-in graph-i
s
apabilities of the indi
ated
ommer
ial systems. The di�eren
e being that PSI
an usethe graphi
s
apabilities of a single node while MultiMATLAB has the ability to utilizethese graphi
s
apabilities on all parti
ipating pro
essors.In
ontrast to PSI, our system allows the user to program at a level of abstra
tionthat lies above that of the PLAPACK library. Further, unlike PSI, the resear
h presentedin this do
ument in
ludes algorithmi
 development and performan
e analysis.1.4.3 FALCONIn sharp
ontrast to MultiMATLAB, the FALCON proje
t [20, 57, 19℄ resulted in a sys-tem
apable of
ompiling MATLAB
ode into an eÆ
ient parallel exe
utable. It mightappear that a large part of the work underlying the FALCON system was made obsolete bythe
ompiler now available from the
ompany that
reated MATLAB, The MathWorksTM.However, this may not be the
ase. Parallel performan
e results are easy to get for theFALCON system while
omparable �gures for MultiMATLAB [63℄ are diÆ
ult to lo
ate.However, it may be that the MultiMATLAB proje
t is far more interested in
exibility thaneÆ
ien
y.Unlike the FALCON proje
t, our work addresses algorithmi
 development and, thus,presents an end-to-end development methodology.1.4.4 BroadwayThe Broadway Proje
t at UT Austin is an e�ort to automati
ally optimize both software li-braries and the appli
ations that utilize them [51, 50℄. This two-pronged approa
h is slightlydi�erent from the work presented in this dissertation. Broadway is primarily aimed at im-proving upon existing routines whereas the resear
h thrust of this dissertation drops ba
k tothe
reation of the algorithms and the use of a new language. Further, Broadway
an be ap-plied to libraries that do not involve s
ienti�

omputation, whereas the PLANALYZER (seeChapters 3{5) is tied to that domain. Finally, our resear
h takes a quantitative approa
h3A ta
ti
 �rst utilized by STAR/MPI [16℄. 9

www.manaraa.com

to the analysis and optimization of algorithms while Broadway's approa
h is qualitative innature, as be�ts a more wide-ranging tool.1.5 Overview of DissertationThis overview is intended to serve to remind the reader of the
omponents under study inthis dissertation resear
h. Ea
h
omponent builds upon the last, but no su

essor in thedevelopment pro
ess is entirely dependent upon its prede
essor. The result is a system thathas a \best of both worlds"
avor; the tools fa
ilitate, but are not responsible for enabling,the next step in the pro
ess of development. The design methodology (FLAME) provides theunderlying stru
ture and philosophy for the rest of the system. The employment of FLAMEresults in algorithms of a spe
i�
 stru
ture. The next step in the pro
ess is the Composer,whi
h utilizes the PLAWright language. The Composer a

epts algorithms evin
ing thisstru
ture as input and may be used to spe
ialize them before library linkage is performed.At that point, the PLANALYZER system is used to generate
ode and
oupled analysisformulae through the use of an annotated library. Finally, the results of the PLANALYZERsystem
an be used to
reate hybridized
ode.1.5.1 Design: FLAME (Chapter 2)The Formal Linear Algebra Methods Environment is a methodology that fa
ilitates thesystemati
 and formal derivation of dense linear algebra algorithms.The FLAME methodology is built upon the use of loop invariants, a fundamentalte
hnique of
omputer s
ien
e. While it is no surprise that this sort of methodology resultsin provably
orre
t algorithms, the te
hnique also allows for the
reation of novel algorithms.There are many other bene�ts to this approa
h, and those are detailed in Chapter 2.The systemati
 nature by whi
h algorithms are derived with the FLAME philosophyis a strong indi
ator that this derivation pro
ess
an be automated. Although su
h automa-tion is not a part of the resear
h presented in this dissertation, some eviden
e is o�ered insupport of the assertion that FLAME
an be partially me
hanized. Me
hanization of thisstep would result in an end-to-end, me
hanized system for the
reation of linear algebralibraries.1.5.2 A Domain-Spe
i�
 Language: PLAWright (Chapter 3)Intimately tied to the derivation of the algorithms is the language in whi
h one expressesthe resulting artifa
t. An e�ort was made to allow the language of the algorithms to bevirtually identi
al to the language of their implementation. FLAMBE is a step towards thisgoal, but it is not the �nal step, as Chapter 3, whi
h introdu
es the PLAWright language,demonstrates.
10

www.manaraa.com

1.5.3 Code Generation (Chapter 4)In this text, the term \
ode generation" may be
onsidered roughly synonymous with fun
-tional
omposition. Here, the
entral issue is linking to a library providing fun
tional self-des
ription via annotations. The approa
h used to me
hanize linkage allows the di�erentlevels of the underlying library to be dealt with in a uniform manner.The other desirable properties of an automated system, su
h as
exible library
oupling, produ
tion
ode that re
e
ts spe
ializations in the high-level language, and high-performan
e
odes based on little user dire
tion, are also evident in the system examined inthis do
ument. Chapter 4 is
on
erned with fun
tional linkage issues while Chapters 4 and5
ombine to deal with the automated produ
tion of high-performan
e
ode.1.5.4 Performan
e (Chapter 5)In the area of s
ienti�

omputation, where linear algebra is a
ornerstone, eÆ
ien
y is
ru
ial. In this
hapter, we
onsider the issue of performan
e as it relates to algorithmi
implementation. There are other interpretations of \performan
e" su
h as
ode
reationtime and the optimal use of the time and talent of human experts, but those are addressedelsewhere. The typi
al axes of quality in this �eld are the exe
ution time and spa
e requiredby exe
uting routines.Chapter 5 studies the issues pertinent to su
h
on
erns: modeling, evaluation, hybridalgorithms, and the performan
e annotations that enable the automation of this pro
ess.1.5.5 Con
lusion (Chapter 6)Finally, a summary of the work and its
ontributions to the area of linear algebra librarydevelopment is presented. Possible dire
tions for further study and future work are alsobrie
y dis
ussed.

11

www.manaraa.com

Chapter 2Systemati
 Derivation ofVariantsSin
e the advent of high performan
e, distributed-memory parallel
omputing, the need forintelligible
ode has be
ome ever greater. The development and maintenan
e of librariesfor these ar
hite
tures is simply too
omplex to be amenable to
onventional approa
hes toimplementation. Attempts to employ traditional methodology have led, in our opinion, tothe produ
tion of an abundan
e of anfra
tuous
ode that is diÆ
ult to maintain and nighimpossible to upgrade.Having struggled with these issues for more than a de
ade, we have
on
luded thatthe solution is to apply a te
hnique from theoreti
al
omputer s
ien
e, formal derivation, tothe development of high-performan
e linear algebra libraries. We think that the resultingapproa
h results in aestheti
ally pleasing,
oherent
ode that fa
ilitates intelligent modular-ity and high performan
e while enhan
ing
on�den
e in its
orre
tness. Sin
e the te
hniqueis language independent, it lends itself equally well to a wide spe
trum of programming lan-guages (and paradigms) ranging from C and Fortran to C++ and Java. In this
hapter, weillustrate our observations by looking at FLAME, a framework that fa
ilitates the derivationand implementation of linear algebra algorithms.2.1 Introdu
tionWhen
onsidering the unmanageable
omplexity of
omputer systems, Dijkstra re
entlymade the following observations [21℄:(i) When exhaustive testing is impossible {i.e., almost always{ our trust
an only be basedon proof (be it me
hanized or not).(ii) A program for whi
h it is not
lear why we should trust it, is of dubious value.12

www.manaraa.com

(iii) A program should be stru
tured in su
h a way that the argument for its
orre
tnessis feasible and not unne
essarily laborious.(iv) Given the proof, deriving a program justi�ed by it, is mu
h easier than, given theprogram,
onstru
ting a proof justifying it.In this
hapter, we make a number of
ontributions to the development linear algebralibraries. These
ontributions relate to the above observations as follows:� By borrowing from Dijkstra's own
ontributions to
omputing s
ien
e, we show howto systemati
ally derive families of algorithms for a given matrix operation.� The derivation leads to a stru
tured statement of the algorithms that mirrors how thealgorithms are often explained in a
lassroom setting.� The derivation of the algorithms provides a proof of the
orre
tness of the algorithms.� By implementing the algorithms so that the
ode mirrors the algorithms that is theend-produ
t of this derivation pro
ess, opportunities for the introdu
tion of error areredu
ed. As a result, the proof of the
orre
tness of the algorithm allows us to assertthe
orre
tness of the
ode.While the resulting infrastru
ture, FLAME, allowed us to qui
kly and reliably implement
omponents of a high-performan
e linear algebra library, it
an equally well bene�t libraryusers who need to
ustomize a given routine or to extend the fun
tionality of their ownlibrary.2.2 OverviewIn Se
tion 2.3.1 we review some basi
 insights from formal derivation theory. Next, in Se
-tion 2.4 we apply these insights to an illustrative example, LU fa
torization without pivoting,in order to develop a family of algorithms for a single, given operation. This is followedby Se
tion 2.5, in whi
h we summarize our systemati
 pro
ess for deriving linear algebraalgorithms. Then, in Se
tion 2.6 we show how library extensions added to the C program-ming language, together with
areful formatting, allows one to write
ode that re
e
ts thealgorithm. The fa
t that the te
hniques
an be applied to a more diÆ
ult operation like LUfa
torization with partial pivoting is then demonstrated in Se
tion 2.7. Performan
e is of
on
ern in this area and in Se
tion 2.8 we demonstrate that high performan
e is not
om-promised by raising the level of abstra
tion at whi
h one
odes. Finally, future dire
tionsand
on
lusions are given
ursory treatment in Se
tion 2.10 and a more in-depth look inSe
tion 6.1.2.3 Ba
kgroundSome would immediately draw the
on
lusion that a
hange to a more modern programminglanguage like C++ is at least highly desirable, if not a ne
essary pre
ursor to writing elegant13

www.manaraa.com

ode. The fa
t is that most appli
ations that
all linear algebra pa
kages are still written inFortran and/or C. Interfa
ing su
h an appli
ation with a library written in C++ presents
ertain
ompli
ations. However, during the mid-1990s, the Message-Passing Interfa
e (MPI)introdu
ed to the s
ienti�

omputing
ommunity a programming model, obje
t-based pro-gramming, that possesses many of the advantages typi
ally asso
iated with the intelligentuse of an obje
t-oriented language [69℄. Using obje
ts (e.g.
ommuni
ators in MPI) toen
apsulate data stru
tures and hide
omplexity, a mu
h
leaner approa
h
an be a
hieved.Our own work on PLAPACK borrowed from this approa
h in order to hide detailsof data distribution and data mapping in the realm of parallel linear algebra libraries. Theprimary
on
ept, also germane to the work presented here, is that PLAPACK raises thelevel of abstra
tion at whi
h one programs so that indexing is essentially removed from the
ode, allowing the routine to re
e
t the algorithm as it is naturally presented in a
lassroomsetting. Sin
e our initial work on PLAPACK, we have experimented with similar interfa
esin su
h
ontexts as (parallel) out-of-
ore linear algebra pa
kages [45, 67℄ and a low-levelimplementation of the sequential Basi
 Linear Algebra Subprograms (BLAS) [42, 44℄.One strong motivation for systemati
ally deriving algorithms and redu
ing the
om-plexity of translating these algorithms to
ode
omes from the fa
t that, for a given opera-tion, a di�erent algorithm may provide higher performan
e depending on the ar
hite
tureand/or the problem dimensions. Some of our previous resear
h [42℄ demonstrated thatthe eÆ
ient, transportable implementation of matrix-matrix multipli
ation on a sequentialar
hite
ture with a hierar
hi
al memory requires a hierar
hy of matrix algorithms whoseorganization mirrors that of the memory system under
onsideration. Perhaps surprisingly,this is ne
essary even when the problem size is �xed. In the same paper, we des
ribe amethodology for
omposing these routines. In this way, minimal
oding e�ort is requiredto attain superior performan
e a
ross a wide spe
trum of algorithms, ar
hite
tures, andproblem sizes.Analogously, previous work demonstrated that an eÆ
ient implementation of par-allel matrix multipli
ation requires both multiple algorithms and a method for sele
ting anappropriate algorithm for the presented
ase if one is to handle operands of various sizesand shapes [40℄. We have
ome to a similar
on
lusion in the
ontext of out-of-
ore fa
tor-ization algorithms and their implementation using the Parallel Out-of-Core Linear AlgebraPACKage (POOCLAPACK) [45, 66℄. To summarize our experien
es: as high-performan
ear
hite
tures in
orporate
a
he, lo
al, shared, and distributed memories all within one sys-tem, multiple algorithms for a single operation be
ome ne
essary for optimal performan
e.Traditional approa
hes make the implementation of libraries that span all possibilities nighimpossible.FLAME is the next step in the evolution of these systems. We
onsider FLAME tobe an environment in the sense that it en
ourages the developer to systemati
ally
onstru
ta family of algorithms for a given matrix operation. Ideally, the steps that lead to the algo-rithms are
arefully do
umented, providing the proof that the algorithms are
orre
t. Onlyafter its
orre
tness
an be asserted should the algorithm be translated to
ode. Sin
e the
ode mirrors the algorithm, its
orre
tness
an be asserted as well, and minimal debugging14

www.manaraa.com

and testing is ne
essary. On
e the
ode delivers the
orre
t results, fun
tionality
an beextended and/or performan
e optimizations
an be in
orporated. We illustrate FLAMEin the simplest setting, for sequential algorithms. Minor modi�
ations to PLAPACK andPOOCLAPACK allow the porting to distributed-memory ar
hite
tures and/or out-of-
ore
omputations with essentially no
hange to the
ode. The extent of this similarity
an beseen by
omparing Figure 2.3(a) and Figure 3.72.3.1 The Corre
tness of LoopsIn a standard text by Gries and S
hneider used to tea
h dis
rete mathemati
s to under-graduates in
omputer s
ien
e we �nd the following material ([36℄, pages 236{237):We prefer to write a while loop using the syntaxdo B ! S odwhere Boolean expression B is
alled the guard and statement S is
alled therepetend.[The l℄oop is exe
uted as follows: If B is false, then exe
ution of the loop termi-nates; otherwise S is exe
uted and the pro
ess is repeated.Ea
h exe
ution of repetend S is
alled an iteration. Thus, if B is initially false,then 0 iterations o

ur.The text goes on to state:We now state and prove the fundamental invarian
e theorem for loops. This the-orem refers to an assertion P that holds before and after ea
h iteration (providedit holds before the �rst). Su
h a predi
ate is
alled a loop-invariant.(12.43) Fundamental invarian
e theorem. Suppose� fP ^BgSfPg holds { i.e. exe
ution of S begun in a state in whi
hP and B are true terminates with P true { and� fPg do B ! S od true { i.e. exe
ution of the loop begun in astate in whi
h P is true terminates.Then fPg do B ! S od fP ^:Bg holds. [In other words, if the loopis entered in a state where P is true, it will
omplete in a state whereP is true and guard B is false.℄The text pro
eeds to prove this theorem using the axiom of mathemati
al indu
tion.Let us translate the above programming
onstru
t into our setting, whi
h we use toa

ommodate linear algebra algorithms. Consider the loopwhile B doSenddo15

www.manaraa.com

where B is some
ondition and S is the body of the loop, the above theorem says that� The loop is entered in a state where some
ondition P holds, and� for ea
h iteration, P holds at the top of the loop, and� the body of the loop S has the property that if it is exe
uted starting in a state whereP holds it
ompletes in a state where P holds.Then if the loop
ompletes, it will do so in a state where
onditions P and :B both hold.Naturally, P and B are
hosen su
h that P ^ :B implies that the desired linear algebraoperation has been
omputed.A method that formally derives a loop (i.e., iterative implementation) approa
hesthe problem of determining the body of the loop as follows: First, one must determine
onditions B and P . Next, the body S should be developed so that it maintains
onditionP while making progress towards
ompleting the iterative pro
ess (eventually B shouldbe
ome false). The operations that
omprise S follow naturally from simple manipulationof equalities and equivalen
es using matrix algebra. Thanks to the fundamental invarian
etheorem, this approa
h implies
orre
tness of the loop.What we will argue in this paper is that for a large
lass of dense linear algebraalgorithms there is a systemati
 way of determining di�erent
onditions P that allow usdevelop loops to
ompute a given linear algebra operation. The di�erent
onditions yielddi�erent algorithmi
 variants for
omputing the operation. We demonstrate this through theexample of LU fa
torization without pivoting. On
e we have demonstrated the te
hniques inthis simpler setting, we will also argue, although somewhat more informally, the
orre
tnessof a hybrid iterative/re
ursive LU fa
torization with partial pivoting in Se
tion 2.7.2.4 A Case Study: LU Fa
torizationWe illustrate our approa
h by
onsidering LU fa
torization without pivoting. Given a non-singular, n � n matrix ,A, we wish to
ompute an n � n lower triangular matrix L withunit main diagonal and an n� n upper triangular matrix U so that A = LU . The originalmatrix A is overwritten by L and U in the pro
ess. We will denote this operation byA Â = LU(A)to indi
ate that A is overwritten by the LU fa
tors of A. Be
ause FLAME produ
es manyvariants of LU fa
torization, it is worthwhile to emphasize the fa
t that, if exa
t arithmeti
is performed, all variants will result in identi
al results. To see this assume that L1U1 =L2U2 are two di�erent fa
torizations. Multiplying both sides by L�12 on the left and U�11on the right yields L = L�12 L1 = U2U�11 = U , where L is unit lower-triangular and Uupper-triangular. Now, L = U implies L = U = I . It follows that L1 = L2 and U1 = U2,so our assumption has been
ontradi
ted and the proof of uniqueness is
omplete.16

www.manaraa.com

2.4.1 A
lassi
al derivationThe usual derivation of an algorithm for the LU fa
torization pro
eeds as follows:PartitionA = �11 aT12a21 A22 ! ; L = 1 0l21 L22 ! ; and U = �11 uT120 U22 !Now A = LU translates to �11 aT12a21 A22 ! = 1 0l21 L22 ! �11 uT120 U22 ! = �11 uT12l21�11 l21uT12 + L22U22 !so the following equalities hold:�11 = �11 aT12 = uT12a21 = �11l21 A22 = l21uT12 + L22U22Thus, we arrive at the following algorithm� Overwrite �11 and aT12 with �11 and uT12, respe
tively (no-op).� Update a21 l21 = a21=�11.� Update A22 A22 � l21uT12.� Fa
tor A22 ! L22U22 (re
ursively or iteratively).The algorithm is usually implemented as a loop, as illustrated in Fig. 2.1. When presentedin a
lassroom setting, this algorithm is typi
ally a

ompanied by the following progressionof pi
tures: �
urrent A - �11a21�11 aT12� A22 � a21�11 aT12-6Here the double lines indi
ate how far the
omputation has progressed through the matrix.At the
urrent stage the a
tive part of the matrix resides in the lower-right quadrant ofthe left pi
ture. Next, the di�erent parts to be updated are identi�ed and the updatesgiven (middle pi
ture). Finally, the boundary that indi
ates how far the
omputation hasprogressed is moved forward (right pi
ture). It is this sequen
e of three pi
tures that we willtry to
apture in the derivation, the spe
i�
ation of the algorithm, and the implementationof the algorithm. 17

www.manaraa.com

partition A! � ATL ATRABL ABR � where ATL is 0� 0do until ABR is 0� 0repartition � ATL ATRABL ABR �! 0� A00 a01 A02aT10 �11 aT12A20 a21 A22 1A where �11 is a s
alar�11 �11 = �11 (no-op)aT12 uT12 = aT12 (no-op)a21 l21 = a21=�11A22 A22 � l21uT12
ontinue with � ATL ATRABL ABR � 0� A00 a01 A02aT10 �11 aT12A20 a21 A22 1Aenddo Figure 2.1: Unblo
ked lazy algorithm for LU fa
torization.2.4.2 But what is the loop-invariant?Noti
e that in the above algorithm the original matrix is overwritten by intermediate resultsuntil �nally it
ontains L and U . Let Â indi
ate the matrix in whi
h the LU fa
torization is
omputed, keeping in mind that Â overwrites A as part of the algorithm. Noti
e that afterk iterations of the algorithm in Fig. 2.1, Â
ontains a partial result. We will denote thispartial result by Âk.In order to prove
orre
tness, one question we must ask is what intermediate value,Âk, is in Â at any parti
ular stage of the algorithm. More pre
isely, we will ask the questionof what the
ontents are at the beginning of the loop that implements the
omputation ofthe fa
torization (e.g., the loop in Fig. 2.1). To answer this question, partition the matri
esas follows: A = A(k)TL A(k)TRA(k)BL A(k)BR ! ; L = L(k)TL 0L(k)BL L(k)BR ! ;U = U (k)TL U (k)TR0 U (k)BR ! and Âk = Â(k)TL Â(k)TRÂ(k)BL Â(k)BR !where A(k)TL, L(k)TL, U (k)TL , and Â(k)TL are all k � k matri
es and \T", \B", \L", and \R" standfor Top, Bottom, Left, and Right, respe
tively.Noti
e that A(k)TL A(k)TRA(k)BL A(k)BR ! = L(k)TL 0L(k)BL L(k)BR ! U (k)TL U (k)TR0 U (k)BR !18

www.manaraa.com

= L(k)TLU (k)TL L(k)TLU (k)TRL(k)BLU (k)TL L(k)BLU (k)TR + L(k)BRU (k)BR !so that the following equalities must hold:A(k)TL = L(k)TLU (k)TL (2.1)A(k)TR = L(k)TLU (k)TR (2.2)A(k)BL = L(k)BLU (k)TL (2.3)A(k)BR = L(k)BLU (k)TR + L(k)BRU (k)BR (2.4)We now show that di�erent
onditions on the
ontents of Â di
tate di�erent algorithmi
variants for
omputing the LU fa
torization, and that these di�erent
onditions
an besystemati
ally generated from Equations 2.1{2.4.Noti
e that in Equations 2.1{2.4 the following partial results towards the
omputa-tion of the fa
torization
an be identi�ed:LnU (k)TL ; L(k)BL; U (k)TR; L(k)BLU (k)TR; and LnU (k)BRHere we use the notation LnU to denote lower and upper triangular matri
es that are storedin a square matrix by overwriting the lower and upper triangular parts of that matrix. Re
allthat L has ones on the diagonal that need not be stored. We restri
t our study to algorithmsthat employ Gaussian elimination and do not involve redundant
omputations. Further, werequire that one or more of the partial results
ontributing to the �nal
omputation havebeen
omputed. A few observations:� If L(k)TL has been
omputed, the elements of U (k)TL has been
omputed as well.� Sin
e L(k)BL = A(k)BLU (k)�1TL , data dependen
y
onsiderations imply that U (k)TL must be
omputed before L(k)BL.� Similarly, sin
e U (k)TR = L(k)�1TL A(k)TR, data dependen
y analysis implies that L(k)TL needsto be
omputed before U (k)TR.� Sin
e the
omputation overwritesA, if L(k)BLU (k)TR has been
omputed, Â(k)BR must
ontainA(k)BR � L(k)BLU (k)TR.� If L(k)BR has been
omputed, we assume that U (k)BR has been
omputed as well (see �rstbullet).� If LnU (k)BR has been
omputed, A(k)BR � L(k)BLU (k)TR must have been
omputed �rst.Taking into a

ount the above observations, we give possible
ontents of Âk inTable 2.1. The �rst and last
onditions indi
ate that no
omputation has been performed orthe �nal result has been
omputed, neither of whi
h is a reasonable
ondition to maintain19

www.manaraa.com

Table 2.1: Possible loop-invariants for LU fa
torization without pivoting.Condition Âk
ontainsNo
omputation has o

urred. A(k)TL A(k)TRA(k)BL A(k)BR !Only (2.1) is satis�ed. LnU (k)TL A(k)TRA(k)BL A(k)BR !Only (2.1) and (2.2) have been satis�ed. LnU (k)TL U (k)TRA(k)BL A(k)BR !Only (2.1) and (2.3) have been satis�ed. LnU (k)TL A(k)TRL(k)BL A(k)BR !Only (2.1), (2.2), and (2.3) have been satis�ed. LnU (k)TL U (k)TRL(k)BL A(k)BR !(2.1), (2.2), and (2.3) have been satis�ed and asmu
h of (2.4) has been
omputed without
omput-ing any part of L(k)BR or U (k)BR. LnU (k)TL U (k)TRL(k)BL A(k)BR � L(k)BLU (k)TR !
(2.1), (2.2), (2.3), and (2.4) have all been satis�ed. LnU (k)TL U (k)TRL(k)BL LnU (k)BR !

20

www.manaraa.com

as part of the loop. This leaves �ve loop-invariants whi
h, we will see, lead to �ve di�erentvariants for LU fa
torization.Note that in this paper we will not
on
ern ourselves with the question of whetherthe above
onditions exhaust all possibilities. However, they do give rise to many
ommonlydis
ussed algorithms. In fa
t, in [23℄ six variants,
alled the ijk orders, of A = LU are listed.The jki form is
ommonly known as a left-looking algorithm while the ikj method is left-looking on AT . Together, they
orrespond to the row- and
olumn-lazy variants dis
ussedin this paper. The kij and kji forms both
orrespond to what has been traditionally
alledthe right-looking algorithm; here, both would be deemed forms of the eager algorithm, onea
olumn- and one a row-oriented version. The ijk and jik forms are more
ommonly knownas the Doolittle (Crout) algorithm and
orrespond to row- and
olumn-oriented versionsof the row-
olumn-lazy variant
onsidered in this do
ument. The lazy algorithm dis
ussedin this paper has no
orresponding variant in the ijk family of algorithms. Further, the
onditions delineated above yield all algorithms depi
ted on the
over of, and dis
ussedin, G.W. Stewart's re
ent book on matrix fa
torization [71℄. This
omes as no surpriseas we, like Stewart, have adopted some
ommon impli
it assumptions about both matrixpartitioning and the nature of algorithmi
 advan
ement. Our a priori assumptions wereonly slightly less
onstri
ting than those imposed by the authors who employed the ijks
heme mentioned above. In this paper we have restri
ted ourselves to a
onsideration ofonly those algorithms whose progress is \simple." That is, ea
h iteration of the algorithmis geographi
ally monotoni
 and formulai
ally identi
al. The
ombination of these twoproperties leads to algorithms whose (indu
tive) proofs of
orre
tness are straightforwardand whose implementations, given our framework, are virtually foolproof.We will label any algorithm \Lazy" if it does the least amount of
omputationpossible in the indu
tive step and \Eager" if it performs as mu
h work as possible at thatpoint. We explain our
lassi�
ation further in [43℄. It needs to be evaluated against a large
lass of algorithms before we make any de�nitive
laims regarding is usefulness.2.4.3 Lazy algorithmThis algorithm is often referred to as a bordered algorithm in the literature. Stewart, [71℄rather
olorfully, refers to it as Sherman's mar
h.Unblo
ked AlgorithmLet us assume that only (2.1) has been satis�ed. To determine the body of the loop (state-ment S), the question be
omes how to update the
ontents of Â: Â(k)BR Â(k)TRÂ(k)BL A(k)BR ! = LnU (k)BR A(k)TRA(k)BL A(k)BR !�! Â(k+1)BR Â(k+1)TRÂ(k+1)BL Â(k+1)BR ! = LnU (k+1)BR A(k+1)TRA(k+1)BL A(k+1)BR !
21

www.manaraa.com

To answer this, repartition A(k)TL Â(k)TRA(k)BL Â(k)BR ! = 0BB� A(k)00 � a(k)01 A(k)02 � a(k) T10A(k)20 ! �(k)11 a(k) T12a(k)21 A(k)22 ! 1CCAwhere A(k)00 is k � k (and thus equal to A(k)TL), and �(k)11 is a s
alar. Repartition Âk, L, andU similarly. This repartitioning identi�es submatri
es that must be updated in order to beable to move the boundary (indi
ated by the double lines) forward. Noti
e that using thisnew partitioning, Âk
urrently
ontains LnU (k)TL A(k)TRA(k)BL A(k)BR ! = 0BB� LnU (k)00 � a(k)01 A(k)02 � a(k) T10A(k)20 ! �(k)11 a(k) T12a(k)21 A(k)22 ! 1CCAAfter moving the double lines, the partitioning of A be
omes A(k+1)TL A(k+1)TRA(k+1)BL A(k+1)BR ! = 0BB� A(k)00 a(k)01a(k) T10 �11 ! A(k)02a(k) T12 !� A(k)20 a(k)21 � A(k)22 1CCAand the partitionings of Âk+1, L, and U
hange similarly. Thus, Âk+1 must
ontain LnU (k+1)TL A(k+1)TRA(k+1)BL A(k+1)BR ! = 0BB� LnU (k)00 u(k)01l(k)T10 �(k)11 ! A(k)02a(k) T12 !� A(k)20 a(k)21 � A(k)22 1CCAIn summary, in order to maintain the loop-invariant, the
ontents of Â must be updatedlike0BB� LnU (k)00 � a(k)01 A(k)02 � a(k) T10A(k)20 ! �(k)11 a(k)T12a(k)21 A(k)22 ! 1CCA ! 0BB� LnU (k)00 u(k)01l(k)T10 �(k)11 ! A(k)02a(k) T12 !� A(k)20 a(k)21 � A(k)22 1CCAThus, it suÆ
es to
ompute u(k)01 , l(k)10 , and �(k)11 , overwriting the
orresponding parts a(k)01 ,a(k)10 , and �(k)11 .To determine how to
ompute these quantities,
onsider0B� A(k)00 a(k)01 A(k)02a(k) T10 �(k)11 a(k) T12A(k)20 a(k)21 A(k)22 1CA = 0B� L(k)00 0 0l(k) T10 1 0L(k)20 l(k)21 L(k)22 1CA0B� U (k)00 u(k)01 U (k)020 �(k)11 u(k)T120 0 U (k)22 1CA= 0B� L(k)00 U (k)00 L(k)00 u(k)01 L(k)00 U (k)02l(k)T10 U (k)00 l(k)T10 u(k)01 + �(k)11 l(k)T10 U (k)02 + u(k)T12L(k)20 U (k)00 L(k)20 U (k)01 + l(k)21 �(k)11 L(k)20 U (k)02 + l(k)21 u(k)T12 + L(k)22 U (k)22 1CA22

www.manaraa.com

partitionA! � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0repartition� ATL ATRABL ABR �! A00 a01 A02aT10 �11 aT12A20 a21 A22 !where �11 is a s
alara01 u01 = L�100 a01aT10 lT10 = aT10U�100�11 �11 = �11 � lT10u01
ontinue with� ATL ATRABL ABR � A00 a01 A02aT10 �11 aT12A20 a21 A22 !enddo

partitionA! � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0determine blo
k size brepartition� ATL ATRABL ABR �! A00 A01 A02A10 A11 A12A20 A21 A22 !where A11 is b� bA01 U01 = L�100 A01A10 L10 = A10U�100A11 LnU11 = LU(A11 � L10U01)
ontinue with� ATL ATRABL ABR � A00 A01 A02A10 A11 A12A20 A21 A22 !enddoFigure 2.2: Unblo
ked and blo
ked versions of the lazy variant for
omputing the LU fa
-torization of a square matrix A (without pivoting).From this equation we �nd that the following equalities must hold:A(k)00 =L(k)00 U (k)00 a(k)01 =L(k)00 u(k)01 A(k)02 =L(k)00 U (k)02a(k)T10 = l(k)T10 U (k)00 �(k)11 = l(k)T10 u(k)01 + �(k)11 a(k)T12 = l(k)T10 U (k)02 + u(k)T12A(k)20 =L(k)20 U (k)00 a(k)21 =L(k)20 U (k)01 + l(k)21 �(k)11 A(k)22 =L(k)20 U (k)02 + l(k)21 u(k)T12 + L(k)22 U (k)22 (2.5)To
ompute u(k)01 one must solve the triangular system L(k)00 u(k)01 = a(k)01 . The result
anoverwrite a(k)01 . To
ompute l(k)10 we solve the triangular system l(k)T10 U (k)00 = a(k) T10 . Theresult
an overwrite a(k)T10 . To determine �11 we merely
ompute �(k)11 = �(k)11 � l(k)T10 u(k)01 .The result
an overwrite �(k)11 . This motivates the algorithm in Fig. 2.2 (left) for overwritinga given non-singular, n� n matrix A with its LU fa
torization.To demonstrate that in deriving the algorithm we have
onstru
tively proven its
orre
tness,
onsider the following:Theorem 1 The algorithm in Fig. 2.2 (left) overwrites a given non-singular, n�n matrix,A, with its LU fa
torization.Proof: To prove this theorem, we merely invoke the Fundamental invarian
e theorem.Here the guard B is ABR 6= 0� 0, predi
ate P isÂ
ontains = LnUTL ATRABL ABR ! where LnUTL is k � k23

www.manaraa.com

and the statement S is the body of the loop in Fig. 2.2 (left).First, noti
e that the statementPartition A = ATL ATRABL ABR !where ATL is 0� 0has the property that after its exe
ution P holds sin
e LnUTL, ATR, and ABL are all empty(they have row and/or
olumn dimensions equal to zero) and ABR = A. Thus, just beforethe loop is �rst entered Â = LnUTL ATRABL ABR ! = ABR = Aand we
on
lude that P holds when k = 0.Re
all that the body of the loop was developed so that fP ^ BgSfPg holds, i.e. ifthe
ondition holds at the top of the loop, then it holds at the bottom of the loop (justbefore the enddo). Also, sin
e at ea
h step the size of ABR de
reases by one, guard B willeventually be
ome false, fPg do B ! S od true holds (i.e. exe
ution of the loop begunin a state in whi
h P is true terminates). We have shown that all of the
onditions of theFundamental invarian
e theorem hold. We therefore
on
lude that if the loop is entered ina state where P holds, it will
omplete in a state where P is true and guard B is false.This means that Â
ontains LnUTL ATRABL ABR ! where ABR is 0�0 and
ompletionof the loop transpires when k = n. Thus the �nal
ontents of the matrix are Â = LnUTLwhere LTL and UTL are unit-lower and upper-triangular matri
es of order n. We
on
ludethat upon exiting the loop, the matrix has been overwritten by its LU fa
torization. 2Blo
ked AlgorithmFor performan
e reasons it be
omes bene�
ial to derive a blo
ked version of the above-presented algorithm. The derivation
losely follows that of the unblo
ked algorithm: Againassume that only (2.1) has been satis�ed. The question is now how to
ompute Âk+b fromÂk for some small blo
k size b (i.e. 1 < b� n). To answer this, repartitionA = A(k)TL A(k)TRA(k)BL A(k)BR ! = 0B� A(k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CA (2.6)where A(k)00 is k � k (and thus equal to A(k)TL), and A(k)11 is b� b. Repartition L, U , and Âk
onformally. Noti
e it is our assumption that Âk holdsÂk = LnU (k)TL A(k)TRA(k)BL A(k)BR ! = 0B� LnU (k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CA24

www.manaraa.com

The desired
ontents of Âk+b are given byÂk+b = Â(k+b)TL Â(k+b)TRÂ(k+b)BL Â(k+b)BR ! = 0B� LnU (k)00 U (k)01 A(k)02L(k)10 LnU(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CAThus, it suÆ
es to
ompute U (k)01 , L(k)10 , L(k)11 , and U (k)11 .To derive how to
ompute these quantities,
onsiderA = 0B� A(k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CA = 0B� L(k)00 0 0L(k)10 L(k)11 0L(k)20 L(k)21 L(k)22 1CA0B� U (k)00 U (k)01 U (k)020 U (k)11 U (k)120 0 U (k)22 1CA= 0B� L(k)00 U (k)00 L(k)00 U (k)01 L(k)00 U (k)02L(k)10 U (k)00 L(k)10 U (k)01 + L(k)11 U (k)11 L(k)10 U (k)02 + L(k)11 U (k)12L(k)20 U (k)00 L(k)20 U (k)01 + L(k)21 U (k)11 L(k)20 U (k)02 + L(k)21 U (k)12 + L(k)22 U (k)22 1CAThis yields the equalitiesA(k)00 =L(k)00 U (k)00 A(k)01 =L(k)00 U (k)01 A(k)02 =L(k)00 U (k)02A(k)10 =L(k)10 U (k)00 A(k)11 =L(k)10 U (k)01 + L(k)11 U (k)11 A(k)12 =L(k)10 U (k)02 + L(k)11 U (k)12A(k)20 =L(k)20 U (k)00 A(k)21 =L(k)20 U (k)01 + L(k)21 U (k)11 A(k)22 =L(k)20 U (k)02 + L(k)21 U (k)12 + L(k)22 U (k)22 (2.7)Thus,1. To
ompute U (k)01 we solve the triangular system L(k)00 U (k)01 = A(k)01 . The result
anoverwrite A(k)01 .2. To
ompute L(k)10 we solve the triangular system L(k)10 U (k)00 = A(k)10 . The result
anoverwrite A(k)10 .3. To
ompute L(k)11 and U (k)11 we simply update A(k)11 A(k)11 �L(k)10 U (k)01 = A(k)11 �A(k)10 A(k)01after whi
h the result
an be fa
tored into L(k)11 and U (k)11 using the unblo
ked algorithm.The result
an overwrite A(k)11 .The pre
eding dis
ussion motivates the algorithm in Fig. 2.2 (right) and Fig. 2.3(b)for overwriting the given non-singular, n� n matrix A with its LU fa
torization. A
arefulanalysis shows that the blo
ked algorithm does not in
ur even a single extra
omputationrelative to the unblo
ked algorithm.The proof of the following theorem is similar to that of Theorem 1.Theorem 2 The algorithm in Fig. 2.2 (right) overwrites a given non-singular, n�n matrix,A, with its LU fa
torization. 25

www.manaraa.com

2.4.4 Row-lazy algorithmAs a point of referen
e, Stewart [71℄
alls this algorithm Pi
kett's
harge south.Let us assume that only (2.1) and (2.2) have been satis�ed. We will now dis
ussonly a blo
ked algorithm that
omputes Âk+b from Âk while maintaining these
onditions.Repartition A, L, U , and Âk
onformally as in (2.6). Our assumption is that Âkholds Âk = LnU (k)TL U (k)TRA(k)BL A(k)BR ! = 0B� LnU (k)00 U (k)01 U (k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CAThe desired
ontents of Âk+b are given byÂk+b = Â(k+b)TL Â(k+b)TRÂ(k+b)BL Â(k+b)BR ! = 0B� LnU (k)00 U (k)01 U (k)02L(k)10 LnU (k)11 U (k)12A(k)20 A(k)21 A(k)22 1CAThus, it suÆ
es to
ompute L(k)10 , LnU(k)11 , and U (k)12 . Re
alling the equalities in (2.7) wenoti
e that1. To
ompute L(k)10 we
an solve the triangular system L(k)10 U (k)00 = A(k)10 . The result
anoverwrite A(k)10 .2. To
ompute L(k)11 and U (k)11 we
an update A(k)11 A(k)11 � L(k)10 U (k)01 = A(k)11 � A(k)10 A(k)01after whi
h the result
an be fa
tored into L(k)11 and U (k)11 . The result
an overwriteA(k)11 .3. To
ompute U (k)12 we
an update A(k)12 A(k)12 � L(k)10 U (k)02 after whi
h we solve thetriangular system L(k)11 U (k)12 = A(k)12 , overwriting the original A(k)12 .These steps and the pre
eding dis
ussion lead one dire
tly to the algorithm inFig. 2.3(
).The proof of the following theorem is similar to that of Theorem 1.Theorem 3 The algorithm in Fig. 2.3(
) overwrites a given non-singular, n � n matrix,A, with its LU fa
torization.2.4.5 Column-lazy algorithmThis algorithm is referred to as a left-looking algorithm in [27℄ while Stewart [71℄
alls itPi
kett's
harge east.Let us assume that only (2.1) and (2.3) have been satis�ed. Now it suÆ
es to
ompute U (k)01 , LnU (k)11 , and L(k)21 . Using the same te
hniques as before one derives thealgorithm in Fig. 2.3 (d). Again, this algorithm overwrites the given non-singular, n � nmatrix, A, with its LU fa
torization.The proof of the following theorem is similar to that of Theorem 1.26

www.manaraa.com

Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Repartition� ATL ATRABL ABR �=0� A00 A01 A02A10 A11 A12A20 A21 A22 1Awhere A11 is b� b(a) Eager:A11 LnU 11 = LU(A11)A12 U12 = L�111 A12A21 L21 = A21U�111A22 A22 � L21U12(b) Lazy:View A00 as LnU 00A01 L01 = L�100 A01A10 L10 = A10U�100A11 LnU 11 = LU(A11 �L10U01) (
) Row-lazy:View A00 as LnU 00A10 L10 = A10U�100A11 LnU 11 = LU(A11 �L10U01)A12 U12 = L�111 (A12 � L10U02)(d) Column-lazy:View A00 as LnU 00A01 U01 = L�100 A01A11 LnU 11 = LU(A11 �L10U01)A21 L21 = (A21 � L20U01)U�111 (e) Row-
olumn-lazy:A11 LnU 11 = LU(A11 �L10U01)A12 U12 = L�111 (A12 � L10U02)A21 L21 = (A21 � L20U01)U�111Continue with� ATL ATRABL ABR �=0� A00 A01 A02A10 A11 A12A20 A21 A22 1AenddoFigure 2.3: LU fa
torization without pivoting for �ve
ommonly en
ountered variants.
27

www.manaraa.com

Theorem 4 The algorithm in Fig. 2.3(d) overwrites a given non-singular, n � n matrix,A, with its LU fa
torization.2.4.6 Row-
olumn-lazy algorithmThis algorithm is often referred to as Crout's methods in the literature [18℄.We assume that only (2.1), (2.2), and (2.3) have been satis�ed. This time, it suÆ
esto
ompute LnU(k)11 , U (k)12 , and L(k)21 , yielding the algorithm in Fig. 2.3 (e). Again, thisalgorithm overwrites a given non-singular, n� n matrix, A, with its LU fa
torization.The proof of the following theorem is similar to that of Theorem 1.Theorem 5 The algorithm in Fig. 2.3(e) overwrites a given non-singular, n � n matrix,A, with its LU fa
torization.2.4.7 Eager algorithmThis algorithm is often referred to as
lassi
al Gaussian elimination.We pro
eed under the assumption that (2.1), (2.2), and (2.3) have been satis�ed,and as mu
h of (2.4) as possible has been
omputed, without
ompleting the
omputationof any part of LBR and UBR. Repartition A, L, U , and Âk
onformally as in (2.6). Noti
e,our assumption is that Âk holds LnU (k)TL U (k)TRL(k)BL A(k)BR � L(k)BLU (k)TR ! = 0B� LnU (k)00 U (k)01 U (k)02L(k)10 A(k)11 � L(k)10 U (k)01 A12 � L(k)10 U (k)02L(k)20 A(k)21 � L(k)20 U (k)01 A(k)22 � L(k)20 U (k)02 1CAThe desired
ontents of Âk+b are given by LnU(k+b)TL U (k+b)TRL(k+b)BL A(k+b)BR � L(k+b)BL U (k+b)TR != 0B� LnU (k)00 U (k)01 U (k)02L(k)10 LnU (k)11 U (k)12L(k)20 L(k)21 A(k)22 � L(k)20 U (k)02 � L(k)21 U (k)12 1CAThus, it suÆ
es to
ompute LnU (k)11 , L(k)21 , U (k)12 , and to update Â(k)22 . Re
alling the equalitiesin (2.7) we �nd1. To
ompute L(k)11 and U (k)11 we fa
tor Â(k)11 whi
h already
ontains A(k)11 �L(k)10 U (k)01 . Theresult
an overwrite Â(k)11 .2. To
ompute U (k)12 we update Â(k)12 whi
h already
ontains A(k)12 � L(k)10 U (k)02 by solvingL(k)11 U (k)12 = Â(k)12 , overwriting the original Â(k)12 .3. To
ompute L(k)21 we update A(k)21 whi
h already
ontains A(k)21 � L(k)20 U (k)01 by solvingL(k)21 U (k)11 = Â(k)21 , overwriting the original Â(k)21 .28

www.manaraa.com

4. We then update Â(k)22 whi
h already
ontains A(k)22 � L(k)20 U (k)02 with Â(k)22 � L(k)21 U (k)12 ,overwriting the original Â(k)22 .The resulting algorithm is given in Fig. 2.3(a). Noti
e that this algorithm is the blo
kedequivalent to the algorithm derived in Se
tion 2.4.1.The proof of the following theorem is similar to that of Theorem 1.Theorem 6 The algorithm in Fig. 2.3(a) overwrites a given non-singular, n � n matrix,A, with its LU fa
torization.2.5 A Re
ipe for Deriving AlgorithmsThe derivations of the di�erent algorithmi
 variants of LU fa
torization, detailed above,were extremely systemati
. The following re
ipe was used:1. State the operation to be performed.2. Partition the operands. Noti
e that some justi�
ation is needed for the parti
ular wayin whi
h they are partitioned. For LU fa
torization, this has to do with the fa
t thatblo
ks of zeroes must be isolated in L and U , as they are triangular matri
es.3. Multiply out all matrix produ
ts
orresponding to this partitioning.4. Equate the submatrix relations that result from the partitioning of Step 3. These de�ne
omputations that the algorithm must perform in order to maintain
orre
tness.5. Pi
k a loop-invariant from the set of possible loop-invariants that satisfy the equa-tions given in Step 4. Noti
e that this loop-invariant plays the role of an indu
tionhypothesis.6. From that loop-invariant, derive the steps required to maintain the loop-invariant whilemoving the algorithm forward in the desired dire
tion. This requires the followingsubsteps:(a) Repartition so as to expose the boundaries after they are moved.(b) Indi
ate the
urrent
ontents for the repartitioned matri
es.(
) Indi
ate the desired
ontents for the repartitioned matri
es su
h that the loop-invariant is maintained.(d) Determine the
omputations required to transform (update) the
ontents indi-
ated in 6b to those indi
ated in 6
, (Naturally, it must be veri�ed that these
omputations are possible.)7. Update the partitioning of the matri
es.8. Continue until the partitioning yields the null matrix for the \BR" submatrix.29

www.manaraa.com

9. Classify the algorithm. We have developed a systemati
 way of
lassifying the derivedalgorithms based upon the nature of the indu
tive step of the algorithm. While weuse this
lassi�
ation in the labeling of the algorithms in the previous se
tion, we willnot go into further detail here.A more
omplete re
ipe for a broader
lass of linear algebra operations
an be found in [43℄.We again point out that the re
ipe impli
itly provides a proof of
orre
tness forthe algorithm sin
e Steps 5{6d emulate the proof by mathemati
al indu
tion. Further,the te
hnique employed for deriving these variants of LU fa
torization generalizes to otherfa
torization algorithms, e.g. Cholesky and QR.2.6 En
oding the Algorithm in CIn this se
tion we brie
y dis
uss how dense linear algebra algorithms, as presented inFigs. 2.1{2.3,
an be translated into
ode. We �rst show a more traditional approa
has it appears in popular pa
kages like LAPACK. Next, we present an alternative frameworkthat allows implementation at a higher level of abstra
tion that mirrors how we naturallypresent the algorithms. This se
ond approa
h has been su

essfully used in PLAPACK andour FLAME framework represents a re�nement of this methodology.2.6.1 Classi
 implementation with the BLASLet us
onsider the blo
ked eager algorithm for the LU fa
torization presented in Fig. 2.3(a). This algorithm requires an LU fa
torization of a small matrix, A11 LnU11 =LU fa
t.(A11), triangular solves with multiple right-hand-sides to update A12 U12 =L�111 A12 and A21 L21 = A21U�111 , and a matrix-matrix multiply to update A22 A22 � L21U12. The triangular solves and matrix-matrix multiply are part of the Basi
Linear Algebra Subprograms (BLAS) (
alls to the routines DTRSM and DGEMM, respe
tively).To understand this
ode, it helps to
onsider the partitioning of the matrix for a typi
alloop index j, as illustrated in Fig. 2.4: A11 is B by B and starts at element A(J,J), A21is N-(J-1)-B by B and starts at element A(J+B,J) , A12 is B by N-(J-1)-B and starts atelement A(J,J+B), and A22 is N-(J-1)-B by N-(J-1)-B and starts at element A(J+B,J+B).The resultant
ode is given in Fig. 2.5.Given this pi
ture, it is relatively easy to determine all of the parameters that mustbe passed to the appropriate BLAS routines.2.6.2 The algorithm is the
odeWe would argue that it is relatively easy to generate the
ode in Fig. 2.5 given the algorithmin Fig. 2.3(a) and the pi
ture in Fig. 2.4. However, the translation of the algorithm tothe
ode is made tedious and error-prone by the fa
t that one has to think very
arefullyabout indi
es and matrix dimensions. While this is not mu
h of a problem if one only hadto implement just one algorithm, real diÆ
ulties may arise when implementing a number30

www.manaraa.com

A00 A01 A02A10 A11 A12t tt tJ - -J+B - -??J ??J+B 	 J-1	 B	 N-(J-1)-B|{z}J-1 |{z}B |{z}N-J-B+1A20 A21 A22Figure 2.4: Partitioning of matrix A with all dimensions annotated when A00 = ATL is(j � 1)� (j � 1).SUBROUTINE LU_EAGER_LEVEL3(N, A, LDA, NB)INTEGER N, LDA, NB, J, BDOUBLE PRECISION A(LDA, *), ONE, NEG_ONEPARAMETER (ONE = 1.0D00, NEG_ONE = -1.0D00)DO J=1, N, NBB = MIN(N-J+1, NB)C A11 <- L\U11 = LU fa
t(A11)CALL LU_EAGER_LEVEL2(B, A(J,J), LDA)IF (J+B <= N) THENC A12 <- U12 = inv(L11) * A12CALL DTRSM("LEFT", "LOWER TRIANGULAR", "NO TRANSPOSE", "UNIT DIAGONAL",$ ONE, B, N-J-B, A(J,J), LDA, A(J, J+B), LDA)C A21 <- L21 = A21 * inv(U11)CALL DTRSM("RIGHT", "UPPER TRIANGULAR", "TRANSPOSE", "NONUNIT DIAGONAL",$ ONE, N-J-B, B, A(J,J), LDA, A(J+B, J), LDA)C A22 <- A22 - A21 * A12CALL DGEMM("NO TRANSPOSE", "NO TRANSPOSE", N-(J-1)-B, N-(J-1)-B, B,$ NEG_ONE, A(J+B, J), LDA, A(J, J+B), LDA, ONE, A(J+B, J+B), LDA)ENDIFENDDORETURNENDFigure 2.5: Fortran implementation of blo
ked eager LU fa
torization algorithm using theBLAS. (Find the bug without referring to Fig. 2.4 or the text!)
31

www.manaraa.com

Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Repartition� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !where A11 is b� binsert update hereContinue with� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !enddoFigure 2.6: Algorithm skeleton for LU fa
torization without pivoting.of possible algorithmi
 variants for a given operation or, in the
ase of a library su
h asLAPACK, implementing even a single su
h variant of ea
h of a large number of operations.One be
omes even more a
utely aware of these issues when distributed-memory ar
hite
turesenter the pi
ture, as in S
aLAPACK.In an e�ort to make the
ode look like the algorithms given in Fig. 2.3, while si-multaneously a

ounting for the
onstraints imposed by C and Fortran, we have developedFLAME. The algorithmi
 and
ode skeletons shared by the �ve variants for the LU fa
-torization, developed earlier in this paper, are given in Figs. 2.6 and 2.7, respe
tively. Tounderstand the
ode, it suÆ
es to realize that A is being passed to the routine as a datastru
ture, A, that des
ribes all attributes of this matrix, su
h as dimensions and methodof storage. Inquiry routines like FLA Obj length are used to extra
t information, in this
ase the row dimension of the matrix. Finally, ATL, A00, et
. are simply referen
es into theoriginal array des
ribed by A.If one is familiar with the
oding
onventions used to name the BLAS kernels, it is
lear that the following
ode segments, when entered in the appropriate pla
e (lines 22-34)in the
ode in Fig. 2.7, implement the di�erent variants of the LU fa
torization:Lazy algorithm23 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,24 ONE, A00, A10);25 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,26 ONE, A00, A01);27 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);28 FLA_LU_nopivot_level2(A11); 32

www.manaraa.com

1 #in
lude "FLAME.h"23 void FLA_LU_nopivot_skeleton(FLA_Obj A, nb_alg)4 {5 FLA_Obj ATL, ATR, A00, A01, A02,6 ABL, ABR, A10, A11, A12,7 A20, A21, A22;89 FLA_Part_2x2(A, &ATL, /**/ &ATR,10 /* ************** */11 &ABL, /**/ &ABR,12 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL);1314 while (b=min(min(FLA_Obj_length(ABR), FLA_Obj_width(ABR)), nb_alg) != 0)15 {16 FLA_Repart_2x2_to_3x3(ATL, /**/ ATR, &A00, /**/ &A01, &A02,17 /* ************* */ /* ******************** */18 /**/ &A10, /**/ &A11, &A12,19 ABL, /**/ ABR &A20, /**/ &A21, &A22,20 /* with */ b, /* by */ b, /* A11 split from */ FLA_BR);21 /* *** */insert
ode for update here31 /* *** */32 FLA_Cont_with_3x3_to_2x2(&ATL, /**/ &ATR, A00, A01, /**/ A02,33 /**/ A10, A11, /**/ A12,34 /* ************** */ /* ****************** */35 &ABL, /**/ &ABR, A20, A21, /**/ A22,36 /* with A11 added to submatrix */ FLA_TL);37 }38 }Figure 2.7: A
ode skeleton for the C implementation of many of the blo
ked LU fa
torizationalgorithms using FLAME.
33

www.manaraa.com

Row-lazy algorithm23 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,24 ONE, A00, A10);25 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);26 FLA_LU_nopivot_level2(A11);27 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12);28 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,29 ONE, A11, A12);Column-lazy algorithm23 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,24 ONE, A00, A01);25 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);26 FLA_LU_nopivot_level2(A11);27 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, A01, ONE, A21);28 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,29 ONE, A11, A21);Row-
olumn-lazy algorithm23 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);24 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, A01, ONE, A21);25 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12);26 FLA_LU_nopivot_level2(A11);27 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,28 ONE, A11, A12);29 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,30 ONE, A11, A21);Eager algorithm23 FLA_LU_nopivot_level2(A11);24 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,25 ONE, A11, A12);26 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,27 ONE, A11, A21);28 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A21, A12, ONE, A22);2.6.3 Positive features of the FLAME approa
hNaturally, one
an argue that determining whi
h of the two methods for
oding the algo-rithms might be deemed \superior" is simply a matter of taste. However, to support our
ase, we list the following questions and/or observations:� What if a bug were introdu
ed into the
ode in Fig. 2.5? Indeed, in that
ode we\a

identally" repla
ed N-(J-1)-B with N-J-B. This kind of bug is extremely hardto tra
k down sin
e the only
lue is that the
ode produ
es the wrong answer or
auses a segmentation fault. A similar bug is not as easily introdu
ed into the
odeimplemented using FLAME sin
e it does not
ontain indi
es. Furthermore, with this34

www.manaraa.com

approa
h it is easy to perform a run-time
he
k in order to determine if the dimensionsof the di�erent matrix operands passed to a routine are
onsistent.� When
oding all variants of the LU fa
torization one inherently has to derive allalgorithms, leading to des
riptions like those given in Fig. 2.3. However, translatingthose to
ode like that given in Fig. 2.5 would require several
areful
onsiderations ofthe pi
ture in Fig. 2.4. Moreover, due to the detailed and extensive indexing involvedin that approa
h,
onsiderable testing would be required before one
ould de
lare the
ode bug-free. By
ontrast, given the algorithms, it has been argued that generatingall variants using FLAME is straightforward. As has already been mentioned, sin
ethe
ode
losely resembles the algorithm, one
an be mu
h more
on�dent about its
orre
tness before the
ode is tested.� What if we wished to parallelize the given
ode? Noti
e that parallelizing a smallsubset of the fun
tionality of LAPACK as part of the S
aLAPACK proje
t has taken
onsiderable e�ort. The FLAME
ode
an be transformed into PLAPACK
ode es-sentially by repla
ing FLA by PLA . This highlights the one-to-one
orresponden
ebetween FLAME and PLAPACK
odes; this
orresponden
e is found to be la
kingwhen one
onsiders LAPACK and S
aLAPACK
odes in the same light.� What if we needed a parallel out-of-
ore version of the
ode? In prin
iple, theFLAME
ode
an be transformed into Parallel Out-of-Core Linear Algebra PACK-age (POOCLAPACK)
ode by repla
ing FLA by POOCLA .2.6.4 But what about Fortran?Again using MPI as an inspiration, a Fortran interfa
e is available for FLAME. Examplesof Fortran
ode are available on the FLAME web page, given at the end of this paper.2.6.5 Proving the implementation
orre
tIn Se
tion 2.4.3 we proved
orre
tness of the lazy algorithm and in subsequent subse
tions ofSe
tion 2.4 asserted that the
orre
tness of the other algorithms
an be established in mu
hthe same way. If the routines
alled by the des
ribed FLAME
ode
orre
tly implementthe operations implied by their names, then it
an be argued that the
ode itself is
orre
t.Indeed, debugging is not ne
essary.There are a number of reasons that we are
omfortable in making su
h a boldassertion. The justi�
ations for the statement rely upon features of both our systemati
algorithmi
 design methodology, the library supporting the implementation of the algorithm,and to the relationship between the two.The manner in whi
h we systemati
ally generate algorithms relies, primarily, on twodesign pillars, whi
h together make up FLAME. The �rst is that we have limited the
lass ofproblems under
onsideration to those in linear algebra. The se
ond is that our algorithms35

www.manaraa.com

onsistently build upon the fundamental invarian
e theorem. This restri
tion leads to thedevelopment of algorithms whose
orre
tness
an be established.Naturally, FLAME is designed to express these systemati
ally generated algorithmsin a manner that is both
on
ise and unambiguous. Therefore, the FLAME
ode
an bemade to mirror the algorithms thus produ
ed. This leads one to
on
lude that the two most
ommon sour
es of error are eliminated. The translation from algorithm to
ode is easilyautomatable be
ause of the one-to-one relation between the two, so that a very
ommonmistake, namely the
ode not re
e
ting the algorithm (when one
onsiders a textual versionof the algorithm as it might be presented in a textbook),
an be obviated. A se
ond
ommonmistake made with su
h
odes, indexing errors, is eliminated from the top-level expressionof FLAME
ode be
ause FLAME does no expli
it indexing. To be
ertain, there are afew support routines within FLAME that perform indexing. However, these routines areso small that they are amenable to both standard proof-of-
orre
tness te
hniques and totruly \exhaustive" testing. In a sense, these routines are analogous to FLAME's \assemblylanguage" and their reliability is
omparable to that of a robust
ompiler.Be
ause our method of derivation leads to a
lass of algorithms whose proof of
or-re
tness is straightforward and sin
e the language we use to express the produ
ed algorithmsshould not lead to any (unintentional) mistranslation from algorithm to
ode, we believethat the
oupled system leads to programs whose
orre
tness follows from a mathemati
alderivation of the algorithm.2.7 LU Fa
torization with Partial PivotingWe now demonstrate that the te
hniques that we introdu
ed using the example of LUfa
torization without pivoting are also appli
able to the
ase of LU fa
torization with partialpivoting. The latter algorithm is the one
ommonly implemented, but involves
ompli
ationsthat have traditionally made its derivation
oding a more intri
ate and time-
onsumingpro
edure.2.7.1 NotationLet Im denote the m�m identity matrix and ~Pm(i) be the m�m permutation matrix su
hthat ~Pm(i)A only swaps the �rst and ith rows of A. Here, we
onsider an m�n matrix, A,where m � n and de�nePm(p0; p1; � � � ; pk�1) = � Ik�1 00 ~Pm�k+1(pk�1) � � � �� I1 00 ~Pm�1(p1) � ~Pm(p0)and Pm;i:j = Pm(pi; : : : ; pj). Here pk equals the index, relative to the top row of the
urrentlya
tive matrix (ABR in previous dis
ussions), of the row that is swapped at the kth step ofLU fa
torization with partial pivoting. Thus Pm(p0; p1; � � � ; pk�1)A equals the matrix thatresults after swapping rows 0 and p0 followed by swapping rows 1 and p1 + 1, et
., in that36

www.manaraa.com

order. Also, Pm;i:jA equals the matrix that results after swapping rows i and pi followed byi+ 1 and pi+1 + 1, et
., in that order.It is well-known that LU fa
torization with partial pivoting produ
es the LU fa
-torization Pm;0:n�1A = LU (2.8)2.7.2 Derivation of the invariantsNow, let us examine the possible
ontents of matrix ~Ak = PA, where P = Pm;0:k�1, thematrix as it has been overwritten partially into the LU fa
torization with partial pivoting.Equation 2.8 is equivalent to Ik 00 Pm�k;k:n�1 ! ~Ak = LUor ~Ak = Ik 00 QT !LUwhere Q = Pm�k;k:n�1Partitioning~Ak = ~A(k)TL ~A(k)TR~A(k)BL ~A(k)BR ! ; L = L(k)TL 0L(k)BL L(k)BR ! ; and U = U (k)TL U (k)TR0 U (k)BR ! ;we �nd that ~A(k)TL ~A(k)TR~A(k)BL ~A(k)BR ! = Ik 00 QT ! L(k)TL 0L(k)BL L(k)BR ! U (k)TL U (k)TR0 U (k)BR != L(k)TLU (k)TL L(k)TLU (k)TR~L(k)BLU (k)TL ~L(k)BLU (k)TR + ~L(k)BRU (k)BR !where LBL = Q~L(k)BL and LBR = Q~L(k)BR. Thus, for 0 � k < n, the equalities in Equa-tions 2.1{2.4 must again hold, ex
ept that L(k)BL, L(k)BR, and A(k), are now repla
ed by ~L(k)BL,~L(k)BR, and ~A(k), respe
tively. We mention, as before, that una

ented submatri
es of L andU denote �nal values. As for LU fa
torization without pivoting, di�erent
onditions on the
ontents of Âk logi
ally di
tate di�erent variants for
omputing the LU fa
torization withpartial pivoting. These are given in Table 2.1, with the provisos mentioned above. Noti
ethat in addition, a ne
essary
ondition is that p0; : : : ; pk�1 have been
omputed.The se
ond and third
onditions listed in Table 2.1 are impra
ti
al sin
e the
om-putation of p0; : : : ; pk�1 requires that the entries of L(k)BL be
omputed. By taking entries 4through 6, listed in Table 2.1, together with the requirement that p0; : : : ; pk�1 have been37

www.manaraa.com

omputed, and using them as part of predi
ate P , three di�erent variants for LU fa
tor-ization with partial pivoting
an be derived. These
onditions again lead to
olumn-lazy(left-looking), row-
olumn-lazy (Crout), and eager (right-looking) variants, respe
tively, thistime with partial pivoting in
orporated.2.7.3 Derivation of the eager algorithmLet us
on
entrate on the eager algorithm. Noti
e, our assumption is that Âk holdsÂk = LnU(k)TL U (k)TR~L(k)BL Â(k)BR ! = 0B� LnU (k)00 U (k)01 U (k)02~L(k)10 ~A(k)11 � ~L(k)10 U (k)01 ~A(k)12 � ~L(k)10 U (k)02~L(k)20 ~A(k)21 � ~L(k)20 U (k)01 ~A(k)22 � ~L(k)20 U (k)02 1CA :The desired
ontents of Âk+b are given byÂk+b = LnU(k+b)TL U (k+b)TR�L(k+b)BL Â(k+b)BR != 0B� LnU (k)00 U (k)01 U (k)02L(k)10 LnU (k)11 U (k)12�L(k)20 �L(k)21 �A(k)22 � �L(k)20 U (k)02 � �L(k)21 U (k)12 1CAwhere, Q1 = Pm�k;k:k+b�1, �A(k)BR = Q1 ~A(k)BR, and �L(k)10�L(k)20 ! Q1 ~L(k)10~L(k)20 !. Note thatLnU (k)11 and L(k)21 are de�ned by Equation 2.9, below, and L(k)10 = �L(k)10 .With some e�ort it
an be veri�ed that the following updates have the desired e�e
t:� Compute Q1, given by fpk; : : : ; pk+b�1g, L(k)11 , U (k)11 , and �L(k)21 su
h that Â(k)11Â(k)21 ! = L(k)11�L(k)21 !U (k)11 (2.9)overwriting Â(k)11Â(k)21 ! LnU (k)11�L(k)21 !� Permute and overwrite: Â(k)10Â(k)20 ! Q1 ~L(k)10~L(k)20 !.� Permute and overwrite: Â(k)12Â(k)22 ! Q1 Â(k)12Â(k)22 !.� Update Â(k)12 U (k)12 = L�1(k)11 Â(k)12 and Â(k)22 Â(k)22 � �L(k)21 U (k)12 .38

www.manaraa.com

Partition A = � ATL ATRABL ABR � and p = � pTpB �where ATL is 0� 0 and pT has 0 elementsdo until ABR is 0� 0Determine blo
k size bPartition� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !where A11 is b� bPartition� pTpB �= p0p1p2 !where p1 has b elementsPartitionABR = � A(1)BR A(2)BR �where A(1)BR has width b.hA(1)BR; p1i h� LnU11L21 � ; p1i = LUpiv(A(1)BR)ABL P (p1)ABLA(2)BR P (p1)A(2)BRA12 U12 = L�111 A12A22 A22 � L21U12Continue with� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !� pTpB �= p0p1p2 !enddoFigure 2.8: Eager blo
ked LU fa
torization with partial pivoting.
39

www.manaraa.com

1 void FLA_LU(FLA_Obj A, FLA_Obj ipiv, int nb_alg)2 {3 < de
larations >45 FLA_Part_2x2(A, &ATL, /**/ &ATR,6 /* ************** */7 &ABL, /**/ &ABR,8 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL);9 FLA_Part_2x1(ipiv, &ipivT,10 /* ****** */11 &ipivB,12 /* with */ 0, /* length submatrix */ FLA_TOP);1314 while (b = min(min(FLA_Obj_length(ABR), FLA_Obj_width(ABR)), nb_alg))15 {16 FLA_Repart_2x2_to_3x3(ATL, /**/ ATR, &A00, /**/ &A01, &A02,17 /* ************* */ /* ********************* */18 /**/ &A10, /**/ &A11, &A12,19 ABL, /**/ ABR, &A20, /**/ &A21, &A22,20 /* with */ b, /* by */ b, /* A11 split from */ FLA_BR);21 FLA_Repart_2x1_to_3x1(ipivT, &ipiv0,22 /* ***** */ /* ***** */23 &ipiv1,24 ipivB, &ipiv2,25 /* with */ b, /* length ipiv1 split from */ FLA_BOTTOM);26 FLA_Part_1x2(ABR, &ABR_1, &ABR_2,27 /* with */ b, /* width submatrix */ FLA_LEFT);28 /***/2930 if (nb_alg <= 4) FLA_LU_level2(ABR_1, ipiv1);31 else FLA_LU (ABR_1, ipiv1, nb_alg/2);3233 FLA_Apply_pivots(FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipiv1, ABL);34 FLA_Apply_pivots(FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipiv1, ABR_2);35 FLA_Trsm(FLA_SIDE_LEFT, FLA_LOWER_TRIANGULAR,36 FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,37 ONE, A11, A12);38 FLA_Gemm(FLA_NO_TRANSPOSE,FLA_NO_TRANSPOSE, MINUS_ONE,A21,A12,ONE,A22);3940 /***/41 FLA_Cont_with_3x3_to_2x2(&ATL, /**/ &ATR, A00, A01, /**/ A02,42 /**/ A10, A11, /**/ A12,43 /* ************** */ /* ****************** */44 &ABL, /**/ &ABR, A20, A21, /**/ A22,45 /* with A11 added to submatrix */ FLA_TL);46 FLA_Cont_with_3x1_to_2x1(&ipivT, ipiv0,47 ipiv1,48 /* ***** */ /* ***** */49 &ipivB, ipiv2,50 /* with ipiv1 added to */ FLA_TOP);51 }52 } Figure 2.9: FLAME re
ursive LU fa
torization with partial pivoting.
40

www.manaraa.com

In Fig. 2.8 we show how an eager blo
ked LU fa
torization with partial pivoting
an be expressed in our algorithmi
 format. In this algorithm, the operation LUpiv(B)returns the result of an LU fa
torization with partial pivoting of matrix B, as well as thepivot indi
es. In that �gure, p1 is a ve
tor of pivot indi
es and P (p1) takes the pla
e ofPm�k;k:k+b�1.An unblo
ked algorithm results when the blo
k size, b, is always
hosen to equalunity. In this
ase, the operationhA(1)BR; p1i " LnU11L21 ! ; p1# = LUpiv(A(1)BR) (2.10)is repla
ed by a determination of the index of the element in ve
tor A(1)BR, followed by a swapof that element with the �rst element of that ve
tor, and �nally a s
aling of the elements ofA21 by 1=A11. (Noti
e that now A21 is a ve
tor and A11 is a s
alar.) In other words, theoperation in Equation 2.10 is repla
ed byChoose p1 s.t. j hA(1)BRip1 j = maxi j hA(1)BRii jSwap hA(1)BRi1 $ hA(1)BRip1A21 L21 = A21=A11Here [x℄i indi
ates the ith element of ve
tor x. It is important to realize that multiplepartitionings of the same matrix referen
e the same data. Thus after swapping the elementsof A(1)BR, A11
ontains what was hA(1)BRip1 before the swap.2.7.4 ImplementationA FLAME implementation of the blo
ked algorithm in Fig. 2.8 is given in Fig. 2.9. Noti
ethat a FLAME implementation of the unblo
ked algorithm would look similar. Let usassume that the latter is
orre
tly implemented in the FLAME routinevoid FLA_LU_level2(FLA_Obj A, FLA_Obj ipiv)Now, the
orre
tness of algorithm in Fig. 2.8 depends only on the
orre
tness of the LUfa
torization with partial pivoting of A(1)BR and the other operation. Thus, there is theoption of implementing the LU fa
torization of the panel A(1)BR as a re
ursive
all to thegiven routine (line 31). Only when the panel be
omes very small is a routine that useslevel-2 BLAS (matrix-ve
tor
omputations)
alled (line 30).Noti
e that the implementation is very
exible in that it is neither purely re
ursivenor purely iterative. By playing with the algorithmi
 blo
k size b (nb alg), one
an attain apurely re
ursive algorithm (when b = n=2 for an m�n input matrix A), purely iterative (byalways
alling FLA LU level2 for the subproblem) or an iterative algorithm that re
ursively
alls itself. An indu
tion on the level of the re
ursion would establish the
orre
tness of thegiven
ode. A more detailed dis
ussion on the
orre
tness of re
ursively formulated linearalgebra algorithms
an be found in [49, 29℄. 41

www.manaraa.com

SYMM C �(L+ L̂T)B + �C C �(U + ÛT)B + �CC �B(L+ L̂T) + �C C �B(U + ÛT) + �CSYRK lo(C) �lo(AAT) + �lo(C) up(C) �up(AAT) + �up(C)lo(C) �lo(ATA) + �lo(C) up(C) �up(ATA) + �up(C)SYR2K lo(C) �lo(ABT +BAT) + �lo(C) up(C) �up(ABT +BAT) + �up(C)lo(C) �lo(ATB +BTA) + �lo(C) up(C) �up(ATB +BTA) + �up(C)TRMM B �LB B �LTB B �UB B �UTBB �BL B �BLT B �BU B �BUTTRSM B �L�1B B �L�TB B �U�1B B �U�TBB �BL�1 B �BL�T B �BU�1 B �BU�TFigure 2.10: Level-3 BLAS operations implemented as part of the produ
tivity experiment.2.8 ExperimentsIn this se
tion, we report the results of three di�erent experiment. The �rst measures the im-pa
t that the FLAME approa
h has on produ
tivity. The se
ond experiment demonstratesFLAME make the implementation of high-performan
e linear algebra algorithms more a
-
essible to novi
es. In the �nal experiment we demonstrate that the attained performan
eis superb.2.8.1 Produ
tivity experimentAs an experiment to measure, albeit roughly, the degree to whi
h FLAME redu
es
odedevelopment time, one of the authors implemented all level-3 BLAS operations given inFig. 2.10 in terms of matrix-matrix multipli
ation. This exer
ise
an easily require monthsto
omplete, even by a programmer who is experien
ed in the implementation of su
h oper-ations. This in
ludes time spent on extensive testing of
orre
tness of the implementations.The entire library of operations was
ompleted using FLAME in a matter of about tenhours, in
luding testing. As of this writing, we have used the resulting library for aboutnine months without en
ountering a bug in the implementations. The resulting
ode isin
luded on the FLAME webpage given at the end of this paper. The prototype imple-mentation of FLAME required to support the implementations of the level-3 BLAS tookapproximately one man-week.It should be noted that the number of lines of
ode required for the implementationis not ne
essarily less than that required for a more
onventional implementation. This isalready evident when
onsidering Figs. 2.5 and 2.7. However, the e�ort is greatly redu
edby the fa
t that the subroutines for the di�erent operations use similar
ode skeletons.Moreover, we believe that the resulting
ode is substantially more readable.
42

www.manaraa.com

2.8.2 A

essibility experimentIt is our
laim that the FLAME approa
h to the derivation and implementation of linearalgebra algorithms greatly simpli�es the development of linear algebra libraries. To demon-strate this, we handed a re
ipe for deriving algorithms, similar to the one in Se
tion 2.5,to a
lass of
omputer s
ien
e undergraduates at UT-Austin. These students had a limitedba
kground in linear algebra and essentially no ba
kground in high-performan
e
omput-ing. Using the FLAME approa
h they implemented blo
ked algorithms for linear algebraoperations that are part of the level-3 BLAS. The results of this experiments
an be foundin [43℄.2.8.3 Performan
e experimentTo illustrate that
orre
tness, simpli
ity and modularity does not ne
essarily
ome at theexpense of performan
e, we measured the performan
e of the LU fa
torization with pivotinggiven in Fig. 2.9 followed by forward and ba
kward substitution, i.e., essentially the LIN-PACK ben
hmark. For
omparison, we also measured the performan
e of the equivalentoperations provided by ATLAS R3.2 [76℄.Some details: Performan
e was measured on an Intel (R) Pentium (R) III pro
essor-based laptop with a 256K L2
a
he running the Linux (Red Hat 6.2) operating system. All
omputations were performed in 64-bit (double pre
ision) arithmeti
. For both implemen-tations the same
ompiler options were used.In Fig. 2.11 we report performan
e for four di�erent implementations, indi
ated bythe
urves markedATLAS: This
urve reports performan
e for the LU fa
torization provided by ATLAS R3.2,using the BLAS provided by ATLAS R3.2.ATL-FLAME: This
urve reports the performan
e of our LU fa
torization
oded using FLAMEwith BLAS provided by ATLAS R3.2. The outer-most blo
k size used for the LU fa
-torization is 160 for these measurements. (Noti
e that multiples of 40 are optimal forthe ATLAS matrix-matrix multiply on this ar
hite
ture.)ITX-FLAME: Same as the previous implementation, ex
ept that we provided our own op-timized matrix-matrix multiply (ITXGEMM). Details of this optimization are thesubje
t of another paper [42℄. This time the outer-most blo
k size was 128. (No-ti
e that multiples of 64 are optimal for the ITXGEMM matrix-matrix multipli
ationroutine on this ar
hite
ture.)ITX-FLAME-opt: Same as the ITX-FLAME implementation, ex
ept that we optimized thelevel-2 BLAS based LU fa
torization of an intermediate panel as well as the pivotroutine by not using the high-level FLAME approa
h for those operations. For theseroutines we
all DSCAL, DGER, and DSWAP dire
tly.For all implementations, the forward and ba
kward substitutions are provided by the ATLASR3.2 DTRSV routine. 43

www.manaraa.com

0 500 1000 1500 2000 2500
150

200

250

300

350

400

450

500

matrix dimension n

P
e

rf
o

rm
a

n
c
e

 i
n

 M
F

L
O

P
S

LU with pivoting on Intel PIII (650 MHz)

ATLAS
ATL−FLAME
ITX−FLAME
ITX−FLAME−opt

Figure 2.11: Performan
e of LU fa
torization with pivoting followed by forward and ba
k-ward substitution.Noti
e that for small matri
es the performan
e of ATL-FLAME is somewhat inferior tothat of ATLAS, due to the overhead for manipulating the obje
ts that en
ode the informa-tion about the matri
es. This is due to the fa
t that this manipulation of obje
ts introdu
esan O(n) overhead whi
h is amortized over a
omputational
ost that is O(n3). When thelevel-2 BLAS based LU fa
torization is
oded without this overhead, the performan
e is
omparable for small matri
es. The performan
e boost witnessed when the ITXGEMMmatrix-matrix multiply kernel is used is entirely due to the superior performan
e of thatkernel, relative to the ATLAS DGEMM implementation.It is important to realize that the performan
e di�eren
e between the implementa-tion o�ered as part of ATLAS R3.2 and our own implementation is not the point of thisperforman
e
omparison or, more generally, of this paper. With some e�ort either imple-mentation
an be improved to mat
h the performan
e of the other. Our primary point isthat FLAME enables one to expend markedly less time to implement these algorithms ina provably
orre
t manner. At the same time, the resulting implementation attains perfor-44

www.manaraa.com

man
e
omparable to that of, what are widely
onsidered to be, standard high-performan
eimplementations.2.9 Related WorkLibraries for dense linear algebra operations have often led advan
es in software engineeringfor s
ienti�
 appli
ations. The �rst su
h pa
kage to a
hieve widespread use and to embodynew te
hniques in software engineering was EISPACK [68℄. EISPACK was also likely the�rst su
h pa
kage to pay
areful attention to the numeri
al stability of the underlying algo-rithms. The mid-1970s witnessed the introdu
tion of the Basi
 Linear Algebra Subprograms(BLAS) [55℄. At that time, the BLAS were a set of ve
tor operations that allowed libraries toattain high performan
e on ve
tor super
omputers while remaining highly portable betweenplatforms, simultaneously enhan
ing modularity and
ode readability. The �rst su

essfullibrary to exploit these BLAS was LINPACK [22℄. By the mid-1980s, it was re
ognizedthat in order to over
ome the gap between pro
essor and memory performan
e on modernmi
ropro
essors it was ne
essary to reformulate matrix operations in terms of matrix-matrixmultipli
ation-like operations, the level-3 BLAS [25℄. LAPACK [5℄, �rst released in the early1990s, is a high-performan
e pa
kage for linear algebra operations written in terms of thelevel-3 BLAS. LAPACK o�ers a fun
tionality that is a super set of LINPACK and EIS-PACK while a
hieving high performan
e on essentially all sequential and shared-memoryar
hite
tures in a portable fashion.A major simpli�
ation in the implementation of the level-3 BLAS themselves
amefrom the observation that they
an be
ast in terms of optimized matrix-matrix multipli-
ation [1, 47, 52℄. Further, the performan
e of the resulting more portable system was
omparable to the vendor-supplied BLAS in many
ases.With the advent of distributed-memory parallel ar
hite
tures, a parallel versionof LAPACK, S
aLAPACK [15℄, was developed. A major design goal of the S
aLAPACKproje
t was to preserve and re-use as mu
h
ode from LAPACK as possible. Thus, all layersin the S
aLAPACK software ar
hite
ture are designed to resemble similar layers in theLAPACK software ar
hite
ture. It was this de
ision that
ompli
ated the implementationof S
aLAPACK. The introdu
tion of data distribution (a
ross memories)
reates a problemanalogous to that of
reating and maintaining the data stru
tures required for storing sparsematri
es. The mapping from indi
es to matrix element(s) was no longer a simple one.Combining this
ompli
ation with the monolithi
 stru
ture of the software led to
ode thatwas laborious to
onstru
t and is diÆ
ult to maintain. Our own Parallel Linear AlgebraPa
kage (PLAPACK) a
hieves a fun
tionality similar to that of S
aLAPACK, targeting thesame distributed-memory ar
hite
tures while using a FLAME-like approa
h to hide detailsrelated to indexing into and distribution of matri
es [74℄. Indeed, the primary inspirationfor FLAME
ame from PLAPACK.A number of re
ent e�orts have explored the notion of utilizing hierar
hi
al datastru
tures for storing matri
es [4, 46, 48℄. The
entral idea is that, by storing matri
es byblo
ks rather than by row- or
olumn-major ordering, data preparation (
opying) for good45

www.manaraa.com

a
he re-use is virtually eliminated. Combining this with re
ursive algorithms that exploitthis data stru
ture, impressive performan
e improvements have been demonstrated. Noti
ethat more
omplex data stru
tures for sequential algorithms introdu
e a
omplexity similarto that en
ountered when data is distributed to the memories of a distributed-memoryar
hite
ture. Sin
e PLAPACK e�e
tively addressed that problem for those ar
hite
tures,we have strong eviden
e that FLAMBE
an be extended to a

ommodate more
omplexdata stru
tures in the
ontext of hierar
hi
al memories.2.10 Chapter SummaryA
olleague of ours, Dr. Timothy Mattson of Intel, re
ently made the following observation:\Literature professors read literature. Computer S
ien
e professors should, at least o

a-sionally, read
ode." When one does this,
ertain patterns emerge and one tends to be
omemore readily able to distinguish good
ode from bad.In this
hapter, we have illustrated that a more formal approa
h to the designof matrix algorithms,
ombined with the right level of abstra
tion for
oding, leads to asoftware ar
hite
ture for linear algebra libraries that is dramati
ally di�erent from the onethat resulted from the more traditional approa
hes used by pa
kages su
h as LINPACK,LAPACK, and S
aLAPACK. The approa
h is su
h that the library developer is for
ed togive
areful attention to the derivation of the algorithm. The bene�t is that the
ode is adire
t translation of the resulting algorithm, redu
ing opportunities for the introdu
tion of
ommon bugs related to indexing. Our experien
e shows that there is no signi�
ant lossof performan
e. Indeed, sin
e more variants for a given operation
an now be more easilydeveloped we often observe a performan
e bene�t from the approa
h.Let us again examine the observations of Dijkstra:(i) When exhaustive testing is impossible {i.e., almost always{ our trust
an onlybe based on proof (be it me
hanized or not).(ii) A program for whi
h it is not
lear why we should trust it, is of dubiousvalue.In this
hapter, and through years of experien
e writing parallel linear algebra libraries, wehave learned this lesson the hard way. While a large per
entage of
ode and an even largerper
entage of e�ort was devoted to the development of test
ode for pa
kages like LAPACKand S
aLAPACK, we believe that the more formal and systemati
 approa
h that under-lies FLAMBE and PLAPACK has redu
ed the need for su
h testing, while simultaneouslyin
reasing our
on�den
e in the implementation.(iv) Given the proof, deriving a program justi�ed by it, is mu
h easier than,given the program,
onstru
ting a proof justifying it.Noti
e that our approa
h
arefully derives the program, making the proof of its
orre
tnessan inherent part of its derivation. 46

www.manaraa.com

(iii) A program should be stru
tured in su
h a way that the argument for its
orre
tness is feasible and not unne
essarily laborious.Sin
e the
ode re
e
ts the algorithm, the argument that the algorithm is
orre
t
arries overto an argument that the
ode is
orre
t.Throughout this
hapter we have fo
used on the
orre
tness of the algorithm. This isnot the same as proving that the algorithm is numeri
ally stable. While we do not
laim thatour methodology automati
ally generates stable algorithms, we do
laim that the skeletonused to express the algorithm, and to implement the
ode,
an be used to implement knownalgorithms with known numeri
al stability properties. It also fa
ilitates the dis
overy andimplementation of new algorithms for whi
h numeri
al properties
an then be subsequentlyestablished.

47

www.manaraa.com

Chapter 3From Variant to MultipleVersionsThis
hapter introdu
es a
oding environment that allows the user to implement algorithmsin a higher level language than FLAMBE (seen in Chapter 2). This language, dubbed\PLAWright," is the interfa
e to the automated system, the PLANALYZER, dis
ussed inthe next three
hapters of this dissertation. The reader is referred to Figure 3.1. In this�gure, the automated
omponents of this dissertation are depi
ted in an abbreviated form.This
hapter fo
uses on, the \High-level Program," whi
h is to be input.Subsequent
hapters demonstrate that this programming approa
h does not requireone to forsake performan
e
onsiderations when moving to a
omputational environment.In this
hapter, the fo
us is on the high level of abstra
tion in programming whi
h frees theuser from many low-level
on
erns. This allows the programmer to utilize algorithms thatbear the promise of in
reased performan
e, but might have been overlooked be
ause of therequired investment in programming, debugging, and maintenan
e time and e�ort [7℄.3.1 MotivationThere are a number of reasons to adopt the
oding style delineated in this
hapter. Some ofthose motivating fa
tors present themselves in the
ontext of sequential systems while othersare made apparent only when distributed
omputational environments are
onsidered. Theissues and diÆ
ulties asso
iated with traditional approa
hes are dis
ussed here along withan overview of the solution advo
ated in this work.3.1.1 Coding Matrix Algorithms: The Sequential WorldThere are two traditional strategies for
oding sequential matrix algorithms:1. Simple indexing into the original array [22℄ and48

www.manaraa.com

Machine
Specifics

High−level
Program

PLAPACK
AnnotatedPLANALYZER

Library calls

Efficient C/Fortran

PLAPACK

Figure 3.1: Overview of the PLANALYZER2. Indexing
ombined with a standard library supplying
omputational kernels [5℄ su
has the Basi
 Linear Algebra Subprograms (BLAS) [26, 25℄.Problems with Traditional Approa
hesAs has been mentioned, both of these approa
hes share the same short
omings. Both ap-proa
hes require that one keep tra
k of where in the matri
es the
omputations are o

urring.The amount of bookkeeping required to do this as algorithms be
ome more sophisti
atedis daunting and error-prone. In order to avoid mounting design and maintenan
e
osts,algorithms that are more ambitious are often abandoned for this reason.Noti
e that the original derivation of these algorithms does not involve these indi
es.It is the attempt to mesh two ways of viewing matri
es that appears to
ause the problem.3.1.2 Coding Matrix Algorithms: Extending to ParallelTraditionally, extending a library [15℄ or an integrated development environment [72℄ to aparallel environment has involved the goal of maximizing
ode re-use. Some newer softwaresystems [19℄ appear to view this goal as se
ondary and they provide some tools for theintegration of alien modules.In
ontrast, software systems with a more
oherent \vision," su
h as PETS
 [9℄ andPLAPACK [74℄, take a more uni�ed view of the
omputational environment and present the49

www.manaraa.com

user with a library that has a more
onsistent interfa
e. These libraries also avoid the pitfallof hiding parallelism in order to avoid added
omplexity. They expose levels of parallelismto the algorithmi
 designer in a
exible manner [8℄.Problems with Traditional Approa
hesWhile the re-use of existing library
omponents is a laudable goal, we think that it isunne
essarily
onstri
ting. For example, the S
aLAPACK proje
t [15℄ attempts to makemaximal re-use of LAPACK [5℄
omponents. This approa
h for
es one to view parallel
omputational systems as vastly more
omplex than sequential systems. While it is truethat su
h ar
hite
tures are somewhat more
ompli
ated, it is the adaptation of sequentiallibraries to parallel environments that
auses many programming errors. The troublesomeartifa
ts of su
h adaptation in
lude lengthening parameter lists and poorly do
umentedintera
tions between levels of both hardware and software.The se
ond error that
an be seen in the design of some of these software pa
kagesis an unfortunate
oupling of
omputation and
ommuni
ation libraries. An example isS
aLAPACK's initial
oupling with the Basi
 Linear Algebra Communi
ation Subprograms(BLACS) [6℄ routines. While part of the problem rested in the non-modular nature of su
h atightly-
oupled arrangement, a more profound penalty is in
urred by the limited breadth ofabstra
tion. Some
ommuni
ations patterns that are not supported by the BLACS libraryarise naturally in parallel linear algebra routines. An example is the BLACS library'sinability to redistribute an n� 1 matrix obje
t a
ross the entire pro
essor grid (i.e. viewthe grid as a linear pro
essor array). This operation is often important for load-balan
e inlinear algebra solver algorithms [28℄.3.1.3 Proposed SolutionIf the sour
e of the problem is the intera
tion between design systems and abstra
tion setsthat are in
ompatible, it makes sense to eliminate this
on
i
t. The development of anabstra
tion set that re
e
ts the derivation of the algorithms
an minimize the severity ofthis
on
i
t.The proposed solution for addressing the diÆ
ulties in the parallel environment isto
ouple the philosophy of libraries, su
h as PLAPACK, with the ease of programmingavailable in environments su
h as the one provided by MATLAB [58℄. This allows the userto exploit or insulate themselves from the details of the parallel programming environment.Allowing the user to
ode in this manner is not only easier on the user, but allows the userto implement algorithms that are more sophisti
ated.Chapter 2 demonstrated that the goal of
oupling the design system and the ab-stra
tion set available to the implementor is a
hievable using
onventional languages. Giventhe initial derivation, and the problems expounded above, it seems that many of the prob-lems en
ountered
ould be obviated if one were allowed to
ode in a format su
h as theone depi
ted in Figure 3.2. The same s
ript may be translated into
ode that operates on asingle pro
essor or into
ode that operates on multiple pro
essors. In this
ase, the eÆ
ien
y50

www.manaraa.com

of the resulting
ode relies on the sophisti
ation of the translator and the underlying library.In addition, as is dis
ussed in Se
tion 3.1.4, the same software system allows the user toimplement both other variants (Figure 3.3) of the algorithm as well as spe
ialized versions(Figure 3.4) while programming in the same style.1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ; // (* Same as non-unit *)3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is implied21 A01 = U01 <- L00^-1 * A01 ;22 A10 = L10 <- A10 * U00^-1 ;23 A11 = (L11\U11) <- A11 - L10 * U01 ;24 A11 = (L11\U11) <- lu_fa
t(A11) ;25 partition26 / ATL # ATR \27 |###########|28 \ ABL # ABR / <= / A00 | A01 # A02 \29 |------------------|30 | A10 | A11 # A12 |31 |##################|32 \ A20 | A21 # A22 / ;33 enddo;34 L =!= A;35 U =!= A;Figure 3.2: Computer-readable s
ript for Lazy version of LU fa
torizationNoti
e that both Figure 3.3 and Figure 3.4 illustrate the exe
utable form of the Eagerversion of the LU de
omposition. While both �gures
orrespond to the algorithm presentedin Figure 2.3 (a) on page 27, the latter is not a \vanilla" form of the variant. It is whatI refer to as a version of that variant; in this
ase, the version is only slightly spe
ialized.This version
ontains a dire
tive intended to result in data lo
ality in a distributed-memory
omputational environment. A dis
ussion regarding the import of su
h spe
ializations isdelayed until Chapter 4. 51

www.manaraa.com

1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ;4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is nb by nb ; // No larger than is implied19 A11 = (L11\U11) <- lu_fa
t(A11) ;20 A12 = U12 <- L11^-1 * A12 ;21 A21 = L21 <- A21 * U11^-1 ;22 A22 <- A22 - L21 * U12 ;23 partition24 / ATL # ATR \25 |###########|26 \ ABL # ABR / <= / A00 | A01 # A02 \27 |------------------|28 | A10 | A11 # A12 |29 |##################|30 \ A20 | A21 # A22 / ;31 enddo;32 L =!= A;33 U =!= A;Figure 3.3: Computer-readable/PLAWright-
ompilable s
ript for the Eager variant of LUfa
torization
52

www.manaraa.com

1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is implied2122 A11 = (L11\U11) <- lu_fa
t(A11) ;23 A12 = U12 <- L11^-1 * A12 ;24 A21 = L21 <- A21 * U11^-1 ;25 A22 <- A22 - L21 * U12 ;26 partition27 / ATL # ATR \28 |###########|29 \ ABL # ABR / <= / A00 | A01 # A02 \30 |------------------|31 | A10 | A11 # A12 |32 |##################|33 \ A20 | A21 # A22 / ;34 enddo;35 L =!= A;36 U =!= A; Figure 3.4: S
ript for Eager version of parallel LU fa
torization
53

www.manaraa.com

Figure 3.5: Where PLAWright �ts into the \grand s
heme" of things.3.1.4 Where PLAWright Fits InLet us re
onsider Figure 1.1, the \Big Pi
ture" illustrated on page 5 of Chapter 1. Whilethe FLAME development methodology is systemati
, it is not automated. Therefore, thereis something of a
ognitive break between FLAME and the remainder of the programmingenvironment dis
ussed in this dissertation. After the variants are produ
ed by the FLAMEmethodology, the pro
ess is entirely me
hanized. The PLAWright Composer marks thepoint of demar
ation between systematization and me
hanization.Automation is desirable in this area be
ause it allows the programmer to fo
us theire�orts on
reating algorithms instead of translating these algorithms into
ode. PLAWrightallows the user to produ
e versions of the di�erent
oding variants (see Figure 3.5, ahead).The language also serves to enfor
e some level of programming dis
ipline. This dis
ipline
omes about be
ause the language of the s
ripts has a syntax that
an be expressed interms of a
ontext-free-grammar (CFG). In our implementation, the CFG is en
oded in thelanguage of the ANTLR [61, 62℄
ompiler tool.3.2 IssuesThere are a number of
onsiderations that a�e
t the design of a domain-spe
i�
 language.The language should
apture the
entral abstra
tions involved in the domain, retain somelevel of
exibility and extensibility, and be of a form that
an be automati
ally translatedinto an exe
utable. In this se
tion we dis
uss these issues.54

www.manaraa.com

3.2.1 Abstra
tionEase-of-use is an important property in a linear algebra library. Unfortunately, this propertyhas often been either ignored or relegated to a position of minor importan
e. On the onehand, the reason for this is simple and not, entirely, in
orre
t: performan
e is important.People do not use a \friendly" appli
ation library for
ode-development if its performan
e
hara
teristi
s are una

eptably poor. On the other hand, people like to use su
h program-ming environments (e.g. MATLAB) for proof-of-
on
ept designs. Therefore, it makes senseto utilize multiple levels of abstra
tion in a mathemati
al library.Su
h levels, optimally, present a somewhat uni�ed interfa
e to the library user.However, it is often the
ase that di�erent levels in su
h a library
annot be
ompletely
on-gruent [15℄ in that they
annot all take the same arguments or argument types. Nonetheless,it is usually possible to present the user with understandable \variations on a theme" inthese
ases if one starts with a systemati
 approa
h to the entire library.Why Level Consisten
y Is ImportantAn important
omponent of the systemati
 approa
h that enables this
onsisten
y betweenprogramming layers lies in the devising of a set of useful abstra
tions to des
ribe the algo-rithms under
onsideration. Sele
ting the right abstra
tions gives one the ability to expressalgorithms in a
ompa
t and understandable manner. Further, it allows for a
onsistentvo
abulary when dis
ussing algorithms at various levels of detail.Important Con
eptsBe
ause this dissertation largely ignores issues of memory hierar
hy until Chapter 5 (seepage 64), it should
ome as no surprise that there are few general abstra
tions involved indesigning dense linear algebra algorithms. Only three appear ne
essary for our purposes.Obje
t manipulation and (data)
omponent
omputation are required in the previouslypresented algorithms. Obje
t property transformations are somewhat hidden, but are alsone
essary. Here, the terms obje
t and
omponent have di�erent meanings. An obje
tin
ludes both the data
omponent and the other properties of the operand (e.g. size).The
omponent is the raw data on whi
h mathemati
al operations are performed. Themanipulation of and
omputation on obje
ts in
uen
es the
orresponding properties of thoseobje
ts. Thus, one
ould
onsider a
omputation to involve the entire obje
t. The problemwith this view is that the property
omputations are of a very di�erent nature than the data
omputations. Further, the data
omputations are well understood; while, traditionally, theproperty transforms have been either ignored or made almost entirely impli
it. Chapter 4,whi
h deals with automati

ode generation (and spe
ialization) presents a
ase for makingthese property transformations expli
it.For a
on
rete example that involves these issues, let us
onsider the Eager variantof LU-de
omposition that is illustrated in Figure 3.6:The entire algorithm relies upon two things:55

www.manaraa.com

partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0repartition� ATL ATRABL ABR � = 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Awhere A11 is nb by nbA11 LU fa
t.(A11)A12 U12 = L�111 A12A21 L21 = A21U�111A22 A22 � L21U12
ontinue with� ATL ATRABL ABR � = 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Aenddo Figure 3.6: Eager approa
h to LU fa
torization (paraphrased)1. How to delimit a blo
k of an operand and2. The manner in whi
h these operand blo
ks intera
tI think that this �gure depi
ts a natural way to express su
h an algorithm. However,as I restri
t the programming environment to the ASCII domain, the goal of this work isto allow the input form to mat
h that illustrated in Figure 3.3. The following se
tionsdemonstrate how this goal
an be a
hieved in an implementation.Obje
t Manipulation Linear algebra routines typi
ally involve matri
es, ve
tors, ands
alars. The number of operands involved in an algorithm depends upon the algorithm under
onsideration. The \nature" of su
h obje
ts in
ludes their instantiation and individuality.For example, in the LU de
omposition there are
on
eptually three obje
ts, all matri
es,A, L, and U . A is instantiated (has size, values et
.) when routine begins, while L andU are not. Also, while we may
onsider the three matri
es to be distin
t entities for thepurposes of deriving equations, the algorithms shown in Chapter 2 were
omposed underthe restri
tion that L and U overwrote A as the algorithms progressed. This
o-lo
ation ofdata in
uen
es the manner in whi
h algorithms are
onstru
ted.These issues motivate all of the obje
t manipulation primitives that are required forthe subset of dense linear algebra algorithms under
onsideration in this do
ument. Therest of this se
tion examines the manipulators needed. Although obje
t properties, su
has being lower-triangular, may be a�e
ted by both manipulation and
omputation they56

www.manaraa.com

are
onsidered a separate abstra
tion and not as a fa
et of either the other two nor as anemergent artifa
t of their intera
tion.The �rst abstra
tion needed is
o-referen
e to an existing obje
t. While other ma-nipulations
an be \abused" to yield this operation, our goal here is not the
onstru
tionof a minimal set of primitives, but the
reation of a small and useful set. The need of thisoperation o

urs at the very beginning of the LU de
omposition algorithm and is relatedto the previously dis
ussed
o-lo
ation property. The LU algorithm begins with a singlematrix, A, that is to be fa
tored into two matri
es L and U . Be
ause L and U eventuallyo

upy the same spa
e as A, the logi
al thing to do is to view A as sharing
omponentswith L and U .The next manipulator to be
onsidered is the one that performs (re-)partitioning.After we have all of the obje
ts that we need to
arry out the algorithm, we need to beable to refer to di�erent subsets of the obje
ts. In the
ases presented in this dissertation,the situation is even simpler, as we wish to be able to \name" only
ontiguous parts of thedata
omponents of the obje
ts under
onsideration. Be
ause we may begin with a two-dimensional matrix and wish to
onsider a two-dimensional submatrix of the same obje
t,it seems that two abstra
tions are required: splitting the obje
t verti
ally and splitting theobje
t horizontally. In addition to the dire
tion of the split, the size of the resulting obje
twould also need to be spe
i�ed in the realization of this abstra
tion. Further, if a matrix
an be de
omposed through splitting, we should also have the ability to
ombine parts of amatrix, or ve
tor, in order to
reate a new obje
t.Clari�
ation and Justi�
ation There are some unanswered questions regarding theabstra
tions given above. Some of these ambiguities involve the issue of
o-referen
e. The�nal question
on
erns the dire
tion of assignment involved in ea
h type of abstra
tion.In Figure 3.3 we for
ed L to
o-referen
e A. This has the same out
ome as splittingA into some number of obje
ts where all but one of the obje
ts has a nil size (0� 0). Whilesu
h a split is valid, there is a drawba
k to this approa
h: it does not mat
h the algorithmsas they were presented in Chapter 2. Also, while it is true that the algorithms
ould be re-written to use this \zero-split"
o-referen
e, it is our
ontention that this would be somewhatless intuitive than the alternative.Another
o-referen
e ambiguity involves the s
ope of the operations and
onditions.Consider that we state that L
o-refers to (the lower-triangular part of) A. While it doesnot arise in the presented algorithm, we may later wish to partition L in one way and A inanother. The language used must provide some way to distinguish between permanent andtemporary
o-referen
es. In PLAWright, the synta
ti
 distin
tion involves the use of === toindi
ate a \lo
ked," re
ursive equality and == to indi
ate a temporary equality.Issues regarding the \dire
tion" of assignments must also be
onsidered. For exam-ple, if we were to employ A = L notation, it would be apparent that A was being assigned toL, as L was assumed to be non-instantiated. In order to make the semanti
s of the languageunambiguous in this regard there are at least three possibilities:1. Rely on input spe
i�
ations to indi
ate whi
h obje
ts are initialized.57

www.manaraa.com

2. Use positional queues. For example, in C, the line X = Y; unambiguously means thatY should be assigned to X. or3. Use operational queues (e.g. Y) X and X (Y would both assign Y to X).The �rst option is undesirable be
ause assignment may involve two initialized obje
ts, or,in the
ase of an assigment that involved
omposition, groups of obje
ts. Therefore, weeliminate the �rst option from
onsideration. There seems to be no
ompelling reason tofavor either of the other two
onventions. While the third allows smaller synta
ti
 alterationsto the algorithmi
 des
ription to disambiguate the meaning of the
ode, one might reasonablyargue that the se
ond alternative yields
leaner
ode. In any
ase, we adopt the thirdalternative as the
onvention in this dissertation and allow = to serve as something of a
omment that
an be used as an assertion of operand
ompatibility.Computation Only three
omputational operators are required by the software systemdis
ussed in this do
ument. All three were used in the di�erent example derivations of theLU de
omposition algorithm: multipli
ation, (triangular) inversion, and addition.In a linear algebra library, one must expe
t to perform some form of matrix multi-pli
ation. This may be a matrix-matrix, a matrix-ve
tor, or a ve
tor-ve
tor multipli
ation.For the moment, let us only
onsider the
ases that are well-de�ned. That is, in the
asewhere we wish to determine the value of A�B, A is of size m� k and B is of size k � n.In this
ase, the primitive used
orresponds to the standard matrix-matrix multipli
ationalgorithm.There are other
ases that must be
onsidered. The �rst su
h
ase arises when theoperation is apparently not well-de�ned but one of the operands is a s
alar (a 1� 1 matrix).This operation needs its own semanti
s to determine if a given
al
ulation is well-de�ned.Su
h an operation is
onsidered well-de�ned if the obje
ts involved are initialized. Theother
ases that must be
onsidered are the result of matrix properties: matrix stru
tureand transposition status.A linear algebra obje
t may have many appli
able stru
tural spe
i�ers. However,only upper- and lower-triangular matri
es are
onsidered in this do
ument. In both
ases,only part of the matrix is
onsidered to be de�ned. Operations involving su
h obje
ts mustnever refer to (read or write) the unde�ned portion of the obje
ts.Matrix inversion is often required in linear algebra. In the Eager LU de
ompositionalgorithm presented in this dissertation, it is used to determine A12 where A12 = L�111 A12,for instan
e.As matrix stru
ture has been
onsidered in this se
tion, it should be pointed outthat the matrix inversion required for the LU algorithm(s) presented here is of a restri
tedtype: the inversion of a triangular matrix. As a pra
ti
al matter, true inversion would notbe performed due to the spe
ial stru
ture of the matrix under
onsideration. Instead, theoperation would be implemented as a
omputationally less expensive triangular solve. Thedetails are unimportant. The situation is highlighted simply be
ause it is an illustration ofthe distin
tion between abstra
tion and implementation.58

www.manaraa.com

The last two operators, matrix addition and matrix subtra
tion, are so similar that,given the s
alar multipli
ation dis
ussed above, only one is required. However, it is easierto dis
uss the algorithms when both are used, so both are in
luded. Both operations arewell-de�ned when both operands are of equal dimensions and have the same stru
ture.Property Manipulations While one may think that the
on
epts of obje
t manipulationand
omputation have some overlap, this is not the
ase in this dissertation. Considerthe pre
eding se
tions. Manipulation involved a single data
omponent while
omputationreferred to obje
t intera
tion. The barrier between abstra
tion
lasses be
omes somewhatmore diÆ
ult to draw when one
onsiders obje
t properties.As has been mentioned, properties
ould be
onsidered as fa
ets of both manipula-tion and
omputation. For reasons already dis
ussed, there are bene�ts to viewing them asseparate entities. However, even with this point-of-view in mind, we must not lose sight ofthe fa
t that both manipulations and
omputations
an a�e
t obje
t properties. Similarly,properties
an a�e
t manipulations and
omputations.While there are many potential obje
t properties, we
onsider only a few. In thisdo
ument, there are only two properties that we
onsider when dealing with obje
ts: sizeand shape.The size property spe
i�es the dimensions of the obje
t under
onsideration. Thisproperty
an be used for a number of things. Most fundamentally, it
an be used duringthe intera
tion of two obje
ts to determine if the proposed intera
tion is well-de�ned.Shape properties
an be used for the same purpose. Here, we
onsider only a fewpossible shape (perhaps more properly
alled \
onstituen
y")
ategories. Among these are:full, empty, zero, and triangular. Empty is essentially the same as unspe
i�ed and the \otherhalf" of a triangular obje
t is treated as unspe
i�ed (uninitialized) during all
omputationalintera
tions.There are also properties that may not be properly atta
hed to any one obje
t.For example, we have already dis
ussed the idea of a
o-referen
e obje
t manipulation(i.e. establishing obje
t equivalen
e). Co-referen
ing
an be viewed as a one- or two-wayrelationship. If we view it as a one-way relationship, one obje
t is \se
ondary" and theproperty may be atta
hed to either obje
t. However, if the relationship is
onsidered to betwo-way, there are two
hoi
es:1. The property
an be atta
hed to both obje
ts or2. The obje
ts
an be atta
hed to their mutual relationshipWe adopt the view that the relationship is two-way and the property is atta
hed to bothobje
ts.Finally, there is the transposition property to
onsider. This property indi
ateswhether an obje
t exists in the transposed state, or if an obje
t is equivalent to the transposeof a se
ond obje
t (often, a \parent" obje
t). While this may arise from a transpositionoperation (a manipulation operation not previously
onsidered), they are di�erent thingspre
isely be
ause the property
an be atta
hed to an obje
t or deleted from that obje
t's59

www.manaraa.com

properties regardless of its \true" state. The transposed state
hanges the appli
ability ofthe
omputational manipulators in the expe
ted way.Iterators and Sele
tors Iteration and sele
tion are required in any mathemati
al pro-gramming language. The PLAWright language uses only one iterator :do until <
ondition>/enddo.Similarly, there is only one sele
tor:if<
ondition>-then-else,a
onstru
t that resembles the C or Pas
al if-then(-else) operator.In PLAWright, there is a restri
tion as to what these <
ondition>s may
ontain.As it is now implemented, the
ondition must be related to the properties mentioned above(stru
ture and size).3.2.2 A Domain-Spe
i�
 Language for Linear AlgebraThe language presented in this
hapter is intended to mirror the algorithms produ
ed whenemploying the FLAME methodology and to allow one to realize, in
ode, the abstra
tionsdis
ussed in Se
tion 3.2.1. Largely, it does so su

essfully, but the disparities betweenFLAME and PLAWright deserve a bit of exposition. Similarly, as the previous
haptermaintained that the FLAMBE
oding style enabled
ode and algorithm to be virtuallyindistinguishable, the
laims made there must be re
onsidered.FLAME vs. PLAWrightIn an attempt to allow the novi
e to
reate programs with eÆ
ien
ies that are
lose to thoseprodu
ed by an expert, the �rst step is to allow the novi
e to program in an environment thatonly requires knowledge of standard linear algebra symbols and a few easily-rememberednotational
onventions.Figure 3.3 on page 52 illustrates the simple, \exe
utable" format of the Eager versionof the LU de
omposition.There are few di�eren
es between this s
ript and the
orresponding algorithm pre-sented in the previous
hapter. The similarity of the two is primarily the result of thefa
t that the abstra
tions were designed around this style of presentation. We would alsomaintain that this style of presentation is a \natural" one and, optimally, the
ode should
onform
losely to it. The di�eren
es between the two are primarily the result of the fa
tthat there are a number of impli
it assumptions that a human makes or \�gures out;" our
ompilation system makes no su
h assumptions.The most obvious di�eren
e is the ASCII-ized nature of the PLAWright language.This dissimilarity exists be
ause standard
ompiler te
hnology does not easily lend itself60

www.manaraa.com

to programming in or interpreting PostS
ript, the standard form of output for te
hni
alpapers. Another notable di�eren
e stems from the need to add
ertain properties (via anno-tations) to the
o-referen
e status that needs to be maintained between L, U , and A. Whileit is
lear that these names are all to initially refer (in some sense) to the same obje
t, it isnot ne
essarily the
ase that this property is to be inherited by all named sub-obje
ts (re-
ursive) or that the property is never voided (permanent). Be
ause FLAMBE was writtento respe
t C and Fortran, this idea of expli
it
o-referen
e appeared to be at odds with thephilosophy of the language. The reader may have noti
ed that an analogous disparity existsbetween FLAME and PLAWright, but was not mentioned in Se
tion 3.2.2. In FLAME the
o-referen
e remains impli
it; only in PLAWright does it seem to present itself as a naturalpart of the language.Another disparity involves the addition of \;" (semi
olons) to the end of ea
h
om-mand in the PLAWright language. This was done for reasons of expedien
y; statementseparators tend to make things
learer to translators without having a profound impa
t onthe readability of the s
ript. They may even make the s
ript somewhat easier to read inthe absen
e of the formatting imposed on Figure 3.3, as whitespa
e is unimportant to thePLAWright-
ompiler. This pra
ti
e also tends to allow for the generation of more informa-tive error messages, sin
e statement and line numbers have unambiguous meaning in this
ase. Finally, the reader may have noted the transposition of = and <- between the algo-rithms and the s
ripts. This was done intentionally in order to point out that su
h things areoften a matter of taste and the
ompilation system
an be altered to suit su
h di�eren
eswith simple symbol (token) renaming. Here, we have taken ease-of-programming a stepfurther and extended the goal to ease of language extension. Sin
e the implementation ofthe language relies upon ANTLR
ompiler te
hnology, allowing su
h
ustomization seemedne
essary and proved to be simple to perform.PLAWright vs. FLAMBEThe PLAWright implementation of Eager LU fa
torization is depi
ted in Figure 3.3. ThisFigure bears a strong resemblan
e to Figure 2.3(a). By way of
ontrast, let us
onsiderthe expression of the eager LU algorithm as expressed using the FLAMBE system as isseen in Figure 3.7. Great pains have been taken to make the FLAMBE language resembleFLAME's language of algorithmi
 expression. However, the
on�nes of the C programminglanguage ne
essitated some of the lexi
al distan
e between the two expressive forms. Byadding the appropriate
omments, as is done in Figure 3.8, one
an make the purpose ofthe
ode more readily evident. However, the use the PLAWright domain-spe
i�
 languageobviates the need for su
h
omments. The
omments in the FLAMBE
ode (Figure 3.8) arevirtually identi
al to the
orresponding lines in the PLAWright s
ript (Figure 3.3).Be
ause performan
e is a
onsideration, it should be pointed out that the use of su
ha s
ript language does not require one to sa
ri�
e their quest for stellar performan
e. In this
hapter, the manner in whi
h the user
an spe
ialize the s
ripts so as to a
hieve superior61

www.manaraa.com

12 void PLA_LU_eager(PLA_Obj A, int nb);3 {4 < de
larations >5 PLA_Create_
onstants_
onf_to(A, &minus_one, NULL, &one);6 PLA_Obj_partition_4(A, &ATL, /**/ &ATR,7 /* ************** */8 &ABL, /**/ &ABR,9 /* with */ 0, /* by */ 0, /* submatrix */ PLA_SUBMATRIX_TL);10 while (size = PLA_OBJ_GLOBAL_LENGTH(ABR)){11 b = min(size, nb);12 PLA_Obj_repartition_4_to_9(ATL, /**/ ATR, &A00, /**/ &A01, &A02,13 /* ************ */ /* ****************** */14 /**/ &A10, /**/ &A11, &A12,15 ABL, /**/ ABR, &A20, /**/ &A21, &A22,16 /* with */ b, /* by */ b, /* A11 split from submatrix */ PLA_SUBMATRIX_BR);17 PLA_LU_level2(A11);18 PLA_Trsm(PLA_SIDE_LEFT, PLA_LOWER_TRIANGULAR,19 PLA_NO_TRANSPOSE, PLA_UNIT_DIAG,20 one, A11, A12);21 PLA_Trsm(PLA_SIDE_RIGHT, PLA_UPPER_TRIANGULAR,22 PLA_NO_TRANSPOSE, PLA_NONUNIT_DIAG,23 one, A11, A21);24 PLA_Gemm(PLA_NO_TRANSPOSE, PLA_NO_TRANSPOSE,25 minus_one, A21, A12, one, A22);26 PLA_Obj_
ontinue_with_9_to_4(&ATL, /**/ &ATR, A00, A01, /**/ A02,27 /**/ A10, A11, /**/ A12,28 /* ************** */ /* ****************** */29 &ABL, /**/ &ABR, A20, A21, /**/ A22,30 /* with A11 added to submatrix */ PLA_SUBMATRIX_TL);31 }32 <
leanup >33 }Figure 3.7: FLAMBE (parallel C version)
ode for the Eager version of LU fa
torization

62

www.manaraa.com

12 void PLA_LU_eager(PLA_Obj A, int nb);3 {4 < de
larations >5 PLA_Create_
onstants_
onf_to(A, &minus_one, NULL, &one);6 PLA_Obj_partition_4(A, &ATL, /**/ &ATR,7 /* ************** */8 &ABL, /**/ &ABR,9 /* with */ 0, /* by */ 0, /* submatrix */ PLA_SUBMATRIX_TL);10 while (size = PLA_OBJ_GLOBAL_LENGTH(ABR)){11 b = min(size, nb); /* Determine blo
k size b */12 PLA_Obj_repartition_4_to_9(ATL, /**/ ATR, &A00, /**/ &A01, &A02,13 /* ************ */ /* ****************** */14 /**/ &A10, /**/ &A11, &A12,15 ABL, /**/ ABR, &A20, /**/ &A21, &A22,16 /* with */ b, /* by */ b, /* A11 split from submatrix */ PLA_SUBMATRIX_BR);17 PLA_LU_level2(A11); /* A11 <- L\U11 = LU fa
t(A11) */18 PLA_Trsm(PLA_SIDE_LEFT, PLA_LOWER_TRIANGULAR, /* A12 <- U12 = inv(L11) * A12 */19 PLA_NO_TRANSPOSE, PLA_UNIT_DIAG,20 one, A11, A12);21 PLA_Trsm(PLA_SIDE_RIGHT, PLA_UPPER_TRIANGULAR, /* A21 <- L21 = A21 * inv(U11) */22 PLA_NO_TRANSPOSE, PLA_NONUNIT_DIAG,23 one, A11, A21);24 PLA_Gemm(PLA_NO_TRANSPOSE, PLA_NO_TRANSPOSE, /* A22 <- A22 - A21 * A12 */25 minus_one, A21, A12, one, A22);26 PLA_Obj_
ontinue_with_9_to_4(&ATL, /**/ &ATR, A00, A01, /**/ A02,27 /**/ A10, A11, /**/ A12,28 /* ************** */ /* ****************** */29 &ABL, /**/ &ABR, A20, A21, /**/ A22,30 /* with A11 added to submatrix */ PLA_SUBMATRIX_TL);31 }32 <
leanup >33 }Figure 3.8: Commented FLAMBE (parallel C version)
ode for the Eager version of LUfa
torization

63

www.manaraa.com

performan
e is addressed, while the dis
ussion regarding the e�e
ts of these spe
ializationswill be largely delayed until Chapter 5.3.2.3 Parallel Spe
ializations and ExtensionsThus far, details regarding
omputational environments have been largely glossed over.The di�erent approa
hes were des
ribed in a manner that avoided any real
onsiderationof a
omputational environment even if the text o

asionally used the term \sequential"to supply a basis for
ommuni
ation. While this is appropriate if one wishes to treat thepresented derivation methods as useful edu
ational tools, it falls short if one wishes to bringthese ideas to fruition in the real world.To realize the presented algorithms and to implement the primitives dis
ussedthus far is a straightforward task if the developer is restri
ted to the monolithi
 memorymodel [60℄. However, to extend the algorithms so that they are eÆ
ient in a distributed-memory system requires more work.This subse
tion presents a number of issues that only arise in the parallel ar
hite
-tural arena and show that few
hanges are required to extend the algorithms and abstra
tionsalready presented so as to
omply with the restri
tions and requirements imposed by thismodel.Why Spe
ialization Is ImportantWhen one shifts one's fo
us from the abstra
t environment of algorithmi
 derivation to thatof implementation, a number of issues arise. In the arena of linear algebra algorithms, these
on
erns
an largely be pared down to one: memory hierar
hy
onsiderations. For exam-ple, in the parallel ar
hite
ture
ase there are two basi
 programming paradigms (models):shared-memory and distributed-memory. In this do
ument the fo
us is on an approa
hthat was designed with distributed-memory ma
hines in mind, but with the ability to treatthe underlying ar
hite
ture as if it were based on the shared-memory model. The reasonfor this approa
h is simple; it is desirable to a

ommodate both models and, sin
e theshared-memory model o�ers mu
h less
ontrol than the distributed model, using a stri
tlyshared-memory model would prove sub-optimal from a performan
e point-of-view [75℄.The primary advantage of the shared-memory model is programming ease. Most ofthe examples in this dissertation, and all those presented thus far,
ould remain un
hangedif they were to be implemented on a shared-memory ma
hine. The reason for this is simple;shared-memory models treat a
omputational system, whether it has non-uniform memoryar
hite
ture (NUMA)
hara
teristi
s or not, as if it were a \UMA" ar
hite
ture. Unfortu-nately, ignoring the NUMA nature of a system
an result in sub-optimal performan
e. Bylayering the abstra
tions and the library derived from those abstra
tions so as to ease tran-sition from a shared view to a distributed view, the user is allowed to trade
onvenien
e forperforman
e in a
exible manner. In Chapter 5 we demonstrate how this design philosophyalso allows for the implementation of a (simple) performan
e analyzer that
an dynami
allyanalyze the trade-o�s as the user transitions between approa
hes.64

www.manaraa.com

Writing Parallel AlgorithmsThere are two ways to view the
onstru
tion of parallel algorithms in this setting. Forsimpli
ity, let us
all them \hands-o�" and \hands-on." Both philosophies have potentialadvantages : : : and disadvantages.The hands-o� approa
h is to rely upon the underlying
omputational environmentto deal with issues related to parallelism. This, of
ourse, requires that the underlying
ode translation and instantiation me
hanism be
apable of treating the
omputationalenvironment as a shared-memory system. Figure 3.9 shows how the
ode for the parallelversion of Eager LU de
omposition might appear in su
h a s
ript.1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is implied2122 A11 = (L11\U11) <- lu_fa
t(A11) ;23 A12 = U12 <- L11^-1 * A12 ;24 A21 = L21 <- A21 * U11^-1 ;25 A22 <- A22 - L21 * U12 ;26 partition27 / ATL # ATR \28 |###########|29 \ ABL # ABR / <= / A00 | A01 # A02 \30 |------------------|31 | A10 | A11 # A12 |32 |##################|33 \ A20 | A21 # A22 / ;34 enddo;35 L =!= A;36 U =!= A;Figure 3.9: S
ript for Eager version of parallel LU fa
torization (hands-o�)Noti
e that there are two very di�erent
ontexts in whi
h this s
ript may be used. The �rst is a trueshared-memory environment in whi
h the underlying hardware provides the support that would allow for asimple line-by-line translation of this
ode to fun
tion as it should. The other
ase involves mapping onto65

www.manaraa.com

a ma
hine whose memory is distributed. While the �rst
ase is rather uninteresting from the perspe
tiveof the work to be presented here,
onsideration of the se
ond
ase brings up a number of issues that meritfurther examination.Here again, we have something of a strategy bifur
ation. The user may either handle the issues thatarise \by hand" or they
an suppose that an underlying library,
oupled with the s
ript translator, providesthe required support. The former option requires a less sophisti
ated library, a simpler s
ript translator,and seems to hold out the promise of more
omplete
ode modularity while the latter would seem to providea framework for simpler
oding. There are a number of issues to be dealt with if the automated
odegeneration system is to work on a distributed ma
hine. In the following se
tions, we dis
uss some of theseissues and, in the end,
onstru
t an LU de
omposition algorithm that, while expli
itly dealing with theissues involved, does not take on the kind of apparent additional
omplexity that is traditionally asso
iatedwith
onverting an algorithm to a distributed-memory model.Impa
t On Abstra
tionLet us assume that the SUMMA [73℄ approa
h to the implementation of the
omputational
omponentsof these algorithms is the one employed. This approa
h involves the appli
ation of a series of parallel,blo
ked operations. Using SUMMA, a parallel matrix-multipli
ation
onsists of a series of panel-panel(outer-produ
t), matrix-panel (a matrix multiplied by many ve
tors), or panel-matrix multipli
ations. Theuse of SUMMA implies that two other abstra
tions are required if one does not wish to adopt the \hands-o�"stan
e dis
ussed in the previous se
tion. We refer to these abstra
tions as dupli
ation and
onsolidation.It may appear diÆ
ult to determine whether these operations are more properly referred to asmanipulations or
omputations. However, as we de�ned
omputations to en
ompass any operation thatinvolves more than one data obje
t, by de�nition both abstra
tions fall into that
ategory. Dupli
ationinvolves dupli
ating part of a data obje
t. That is,
opying the data from one obje
t into the data
omponentof some other obje
t(s). Consolidation (often referred to as \redu
tion") is the
onverse of this relationship.It involves applying a fun
tion (in Fig. 3.9, addition) to some set of obje
ts that may be distributed a
rossthe grid and
opying the result into another obje
t.Revisions For Performan
eWhile generating eÆ
ient, parallel
ode from a s
ript is useful, it may be that the
ode generation systemuser feels too far removed from the implementation. Sometimes this distan
e is desired, as in the
ase of auser who has neither the desire nor the expertise to avail himself of the \deeper" aspe
ts of the programmingenvironment; but often, it is not.A
ommon mistake that this
ode generation system avoids is the permanent hiding of parallelismand other details. By allowing the user to address the underlying ar
hite
tural system at di�erent levels ofgranularity, superb performan
e and simpli
ity
an be a
hieved with a reasonably
onsistent programming\look and feel." This approa
h would seem to be the natural extension of the belief that
omputationalabilities (su
h as parallelism) should not be hidden even though we may wish to
on
eal how they operate [8,75℄. To illustrate the manner in whi
h su
h revisions might appear in a s
ript language, we presentFigure 3.10. A few remarks about some of the notation used in this \hands on" s
ript are probably
alledfor. The use of the \Lo
al" fun
tional notation is intended to impose the requirement that the en
losedoperation does not involve any interpro
essor
ommuni
ation. The other two, somewhat
rypti
, notations|* and -* indi
ate \all pro
essor
olumns" and \all pro
essor rows," respe
tively.As
an be seen in Chapter 5, there are many things that
an be determined and usedto advantage if the input is more spe
i�
 than a mathemati
al des
ription of the problem athand. In the
ase where su
h additional information is withheld from the analysis engine,
ertain defaults are assumed. However, there is no guarantee that the default values are agood approximation to those of the problem under
onsideration. It would be very diÆ
ult to66

www.manaraa.com

1 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)2 U === A ; // {Re
ursive} {Permanent}3 L has_property unit_lower_triangular ; // (* Permanent Property *)4 U has_property upper_triangular ;5 A has_property square ; // (* A
tually, Square here *)6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is really implied2122 fun
tion_override("PLALu1");23 A11 = (L11\U11) <- lu_fa
t(A11) ;24 Lower[L11tri℄ |* <- Lower[L11℄ ;25 A12 = U12 .<- Lower[L11tri℄^-1 * A12 ;26 U11tri -* <- Upper[U11℄ ;27 A21 = L21 .<- A21 * Upper[U11tri℄^-1 ;28 L21
ol |* <- L21 ;29 U12row -* <- U12 ;30 A22 .<- A22 - L21
ol * U12row ;31 partition32 / ATL # ATR \33 |###########|34 \ ABL # ABR / <= / A00 | A01 # A02 \35 |------------------|36 | A10 | A11 # A12 |37 |##################|38 \ A20 | A21 # A22 / ;39 enddo; Figure 3.10: S
ript for Eager version of parallel LU fa
torization
67

www.manaraa.com

provide su
h assuran
es, as the same implementation must work with di�erent mathemati
alobje
ts and on di�erent
omputational grids.The information that
an be
ommuni
ated via the PLAWright annotations in
ludes:� The absolute or relative obje
t sizes� Known
onstraints or preferen
es (maximum memory
onsumed)� Target ar
hite
ture or hardware system spe
i�
s (per pro
essor or for entire ma
hine)� Minimum/Maximum/Spe
i�
 grid size and topology to be used� That the data will be distributed in some parti
ular manner� The form of results that are expe
ted from stati
 analysis (see Chapter 5 for options).3.3 Related WorkSin
e the work in this
hapter
onsiders abstra
tion in the light of both library
onstru
tionand programming environment, work related to ea
h topi
 is dis
ussed.3.3.1 Library-Based Abstra
tionsThe �rst issue that should be dealt with is the use of the term environment as it appliesto a library. We posit that a library quali�es as an environment, or \framework" if thereader prefers, be
ause it impli
itly imposes a set of
on
epts on the user. These
on
eptsare expe
ted to be appropriate for the problem at hand and
apable as a
ting as guides forthe user.Libraries are a means to \export" the expertise of some set of people so that it isavailable to a se
ond set of individuals. Often it is the
ase that this se
ond set la
ks some,or all, of the area-spe
i�
 expertise of the �rst group. Most usually the library is
onsideredto be at a \lower-level" than the appli
ations whi
h use it. However, this is not always the
ase. Consider the fa
t that a library
an be distributed in at least two forms [57, 54℄. The�rst is the more traditional:
omputer-language (sour
e or ma
hine)
ode. The se
ond is inthe form of an algorithmi
 des
ription of the pro
ess of
on
ern. This latter form providesan unrealized (potentially high-level) fun
tionality set that imposes fewer restri
tions, butsupplies the same framework as a
oded library.Two well-known examples of traditional linear algebra libraries are LINPACK [22℄and LAPACK [5℄. Both libraries are built around an index-based s
heme
ombined with aset of general
omputational kernels. LINPACK, predating LAPACK, utilizes a subset of thekernels exploited by LAPACK. Whereas LINPACK uses only Level-1 BLAS (ve
tor-ve
tor)operations, LAPACK uses all three levels of the BLAS.While a paper or template [10℄ library does not provide an appli
ation program-ming interfa
e (API), it does provide, in many
ases, a \plan of atta
k" for implementing68

www.manaraa.com

a software system and a foundation for
reating an API (modulo programming language
onstraints).3.3.2 Programming EnvironmentsTwo well-known examples of modern programming environments are the Mathemati
a [77,35℄ and MATLAB [58℄ programming pa
kages. Both supply the user with a vast array offun
tions for
omputation and visualization as well as a rudimentary integrated debuggingsystem. Additionally, both provide a huge assortment of library routines and their ownprogramming language with whi
h to
all them. Further, both supply interfa
e routinesand do
umented spe
i�
ations so that the user is allowed to link in routines written inother more traditional languages, su
h as C or Fortran.Although Mathemati
a and MATLAB are examples of environments, they are, inmany ways, atypi
al of su
h pa
kages, though probably typi
al of the dire
tion in whi
hthese produ
ts are moving. While motivations of a
ommer
ial nature may keep the sour
e
ode of these newer systems under wraps for the near future, these produ
ts allow the userto plug-in their own modules. 1Older software systems tended to be monolithi
 and, as they did not produ
e
ode,plugging in user-de�ned modules was diÆ
ult. Newer pa
kages take a two-tiered approa
h:those users who wish to
ontinue to view fun
tions as bla
k-boxes are free to do so, whilethose who want to look inside are given the ability to do so.3.4 Chapter SummaryIn this
hapter, we have presented a language that allows the algorithm designer to spe-
ialize their operations. Spe
i�
ally, we have seen that the user is free to manipulate thedistribution of data a
ross the
omputational grid as he sees �t. Su
h freedom is desirablefrom a performan
e-based point-of-view, but it is ne
essary from a
exibility standpoint. Ifthis multi-layered approa
h is abandoned, the la
k of a parti
ular library module may implythat the algorithm designer is engaging in a futile e�ort. Just as in the sequential
ase, it isvital that the user have the tools needed to
onstru
t novel algorithms.In Chapter 4 we demonstrate that di�erent s
ript variants result in the produ
tionof di�erent
ode instan
es, as one would expe
t. In that same
hapter, we des
ribe how thiso

urs and why it is often bene�
ial. While Chapter 4 also
ontains a dis
ussion related tos
ript versions and the di�eren
es in the
ode
orresponding to those versions, mu
h of thedis
ussion regarding the importan
e of this feature is delayed until issues of performan
eare
onsidered in Chapter 5.
1MATLAB supplies, at an added
ost, the ability to
ompile their
ode into a more eÆ
ient exe
utable.69

www.manaraa.com

Chapter 4Automated Code GenerationImplementation tweaking is a standard part of the pro
ess when one is developing high-performan
e s
ienti�
 appli
ations intended to run on parallel ar
hite
tures. In this areaof resear
h, algorithmi
 restru
turing and
ode-level optimizations have traditionally beendone by di�erent groups [32℄. Unfortunately, information that
ould be employed to make
ode more eÆ
ient is traditionally obs
ured in the translation from a high-level des
riptioninto low-level
ode. Allowing the user to
ode in a domain-spe
i�
 language su
h that high-level information is retained while automati
ally
oupling the requirements to low-levelroutines would allow for both high- and low-level optimizations. The work presented in this
hapter allows one to perform pre
isely this a
tivity. That is, to generate
ode instan
eswith high-performan
e
hara
teristi
s while programming at a very high level.For an overview of the automated segment of the pro
ess des
ribed in this disserta-tion, the reader is instru
ted to refer to the illustration in Figure 3.1. There, the high-levelprogram (expressed in PLAWright) is translated into a series of PLAPACK library
alls.The transformation pro
ess depends on the spe
i�
s of both the target library andthe
omputational environment. Thus, the library routines in the target library are anno-tated with the following in order to
reate the
orresponding annotated library:� Their semanti
s, whi
h indi
ate what linear algebra operation is performed (i.e. servi
eprovided).� Guards, whi
h indi
ate the
onditions under whi
h the library
all is well-de�ned.� Performan
e
hara
teristi
s, whi
h are used to generate automated analysis.The PLANALYZER uses the semanti
s and guards of the library routines in orderto generate a number of implementations whose fun
tionality
orresponds to the input s
riptversion. This pro
ess is the fo
us of this
hapter as is indi
ated in Figure 4.1. While this
hapter largely ignores performan
e
onsiderations, the next
hapter fo
uses on the issueof performan
e
hara
teristi
s, so the reader with su
h
on
erns need not worry that theyhave been entirely overlooked. 70

www.manaraa.com

Figure 4.1: Where the
ode generator �ts into the \grand s
heme" of things.4.1 Motivation for Automating Library LinkageThere are many reasons that one might wish to automate library linkage. In Chapter 3,the PLAWright s
ript language was presented. In that
hapter, the fo
us was on the fa
tthat the language provided for the eÆ
ient utilization of the expertise of the programmer.It was also pointed out that the s
ripts
ould be
ompiled and the resulting
odes were
omputationally eÆ
ient. By automating library linkage, one
an write a single exemplar
ode (s
ript) that
ompiles into many di�erent
ode realizations.This pra
ti
e also fa
ilitates the leveraging of the expert's knowledge via a separationof
on
erns. The appli
ation writer
an
on
entrate on the pi
ture as he sees it and relyon the fa
t that the library writer provides eÆ
ient routines and that those routines arelinked to at the time of
ompilation. The library writer might have a similar relationshipwith the kernel writer. All of these users
ould be \
ommuni
ating" their work throughthe annotations they add to their
ontributed routines and allowing the
ompilation systemto �nd a mat
h between what they require (as is expressed in the s
ript) and what thelibrary provides (as is
ommuni
ated in the asso
iated annotation). Thus, the automatedsystem represents an potential extension to what is often-sought in this relationship amongprogrammers. In the next
hapter, we dis
uss how high performan
e is a
hieved. Here, weassume that eÆ
ient routines are linked to the user's requests.Portability
an be as important as performan
e in the domain of dense linear algebra71

www.manaraa.com

libraries. Not only do
ompanies
ome and go, but vastly di�erent ar
hite
tural designs maybe
reated and tested. Sometimes this testing o

urs in the marketpla
e and sometimes ittranspires in resear
h fa
ilities, but the shakeout that determines what lasts and what doesnot, will
ontinue to happen as long as resour
es are �nite. The
ore diÆ
ulty here is how todesign a
ode generation system or systematize an approa
h su
h that the result is amenableto both evolutionary (e.g. Cray T3D ! Cray T3E) and revolutionary (e.g. Intel Paragon! LEGION ! Blue Gene)
hanges.It would seem that adapting to
hanges that are, as measured by performan
e met-ri
s, orders of magnitude apart would best be supported by two distin
t approa
hes [3℄,one emphasizing ease-of-use, and the other
on
entrating solely on a
hieved performan
e.However, it is our thesis that one should moderate, at times, the (laudable) goal of \a sepa-ration of
on
erns." One must determine when
on
erns are identi
al or largely overlapping(i.e., to de
ide if and when these
on
erns are the same when viewed from a given level ofabstra
tion).The s
ripts
orresponding to the Eager and Lazy versions of LU fa
torization (de-pi
ted in Figures 4.2 and 4.3, respe
tively) are in a form that might be termed user-friendly.However, the user may wish to give dire
tives to the
ode generation system. These di-re
tives might involve obje
t distribution, blo
k sizes, or spe
ifying the name of a spe
i�
library routine. In this
hapter we address the impa
t of these \hints" on
ode produ
-tion. For example, if one were to spe
ialize Figure 4.2 by providing su
h hints, the resultmight well be Figure 4.4 (seen previously in Figure 3.10). Note that lines 22 and 24-30in Figure 4.4 are all user-supplied hints related to fun
tion sele
tion (24) or distributionspe
i�
ation (24-30).4.2 Issues in Library LinkageThe issues that one must
onsider when designing, in the abstra
t, an automated library-linkage system are mirrored when one's fo
us shifts to an implementation. This se
tionrestri
ts itself to issues that apply to the abstra
t
ase while the next se
tion deals withea
h issue in the
ontext of a proof-of-
on
ept implementation. The manner in whi
h thepro
ess of linking takes pla
e is delayed until Se
tion 4.3 be
ause
ommuni
ation regardingthat subje
t bene�ts from the existen
e of
on
rete examples.4.2.1 A (Fi
titious) Linking LibraryThere are many ways in whi
h any s
ienti�
 software library
an be
onstru
ted. Werestri
t our attention to theoreti
al
onstru
ts that lie at opposite ends of the spe
trum ofpossibilities and
onsider issues germane to the use of a s
ript language su
h as PLAWright.First, there is the possibility that the library
ontains a great many subroutines.So many, in fa
t, that there is always at least one subroutine that mat
hes the featurerequirements of any operation requested (see Se
tion 4.2.2) by a s
ript statement. At theother end of the s
ale, there is the possibility that the library
onsists of few routines, but72

www.manaraa.com

1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is implied2122 A11 = (L11\U11) <- lu_fa
t(A11) ;23 A12 = U12 <- L11^-1 * A12 ;24 A21 = L21 <- A21 * U11^-1 ;25 A22 <- A22 - L21 * U12 ;26 partition27 / ATL # ATR \28 |###########|29 \ ABL # ABR / <= / A00 | A01 # A02 \30 |------------------|31 | A10 | A11 # A12 |32 |##################|33 \ A20 | A21 # A22 / ;34 enddo;35 L =!= A;36 U =!= A;Figure 4.2: Computer-readable S
ript for Eager version of LU fa
torization
73

www.manaraa.com

1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ; // (* Same as non-unit *)3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is implied21 A01 = U01 <- L00^-1 * A01 ;22 A10 = L10 <- A10 * U00^-1 ;23 A11 = (L11\U11) <- A11 - L10 * U01 ;24 A11 = (L11\U11) <- lu_fa
t(A11) ;25 partition26 / ATL # ATR \27 |###########|28 \ ABL # ABR / <= / A00 | A01 # A02 \29 |------------------|30 | A10 | A11 # A12 |31 |##################|32 \ A20 | A21 # A22 / ;33 enddo;34 L =!= A;35 U =!= A;Figure 4.3: Computer-readable s
ript for Lazy version of LU fa
torization
74

www.manaraa.com

1 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)2 U === A ; // {Re
ursive} {Permanent}3 L has_property unit_lower_triangular ; // (* Permanent Property *)4 U has_property upper_triangular ;5 A has_property square ; // (* A
tually, Square here *)6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is really implied2122 fun
tion_override("PLALu1");23 A11 = (L11\U11) <- lu_fa
t(A11) ;24 Lower[L11tri℄ |* <- Lower[L11℄ ;25 A12 = U12 .<- Lower[L11tri℄^-1 * A12 ;26 U11tri -* <- Upper[U11℄ ;27 A21 = L21 .<- A21 * Upper[U11tri℄^-1 ;28 L21
ol |* <- L21 ;29 U12row -* <- U12 ;30 A22 .<- A22 - L21
ol * U12row ;31 partition32 / ATL # ATR \33 |###########|34 \ ABL # ABR / <= / A00 | A01 # A02 \35 |------------------|36 | A10 | A11 # A12 |37 |##################|38 \ A20 | A21 # A22 / ;39 enddo;Figure 4.4: Annotated s
ript for an Eager version of parallel LU fa
torization
75

www.manaraa.com

routines from whi
h one
ould
onstru
t an algorithm mat
hing the semanti
 requirementsof any legal s
ript statement.Either of these libraries
an be used in an automated
ode generation system. Deter-mining whi
h one is \best" would seem to be a philosophi
al, not s
ienti�
, issue. Certainly,in the large library
ase, mat
hing the requirements of the s
ript to the fun
tionality pro-vided by the library is simpler. The mat
hing
an be both 1:1 on a line-by-line basis andpurely synta
ti
 in the �rst
ase. Further, if the underlying library is optimized, the opera-tions
orresponding to these mat
hes is almost always the best
hoi
es from a performan
eperspe
tive. In the small library
ase, the mat
hing pro
edure is more
omplex, as it hasthe responsibility of building programs from
omponents.For the purposes of this dissertation, we fo
us on a library that lies somewhere inthe middle. This is justi�ed for the following reasons. First, if the large, eÆ
ient library is
onsidered the target, the work involved in the binding pro
ess is not very interesting. Inthat
ase, mat
hing is simple and, while automated performan
e analysis (see Chapter 5)might be interesting, it is not ne
essary, as the highest degree of available eÆ
ien
y isvirtually assured simply by dint of the \brains" in (or behind) the library. Se
ond, the
ase of the building-blo
k library has an unfortunate stopping point, namely the
onstru
tsin the language of output. Sin
e the idea of generating optimized assembly language froma high-level s
ript language would appear to be too ambitious for any single dissertation,a middle ground was sele
ted. In any
ase, expertise is required. For the large library, agreat deal of expertise would be needed to
onstru
t the annotations, while in the building-blo
k library
ase, the greater expertise would be required to transform the input to a listof library-mat
hable requirements. Finally, the PLAPACK library was targeted be
ause itis an implementation of the layered approa
h advo
ated in this do
ument and has goodperforman
e
hara
teristi
s.4.2.2 Redu
ing a S
riptThe algorithm expressed in s
ript form is to be realized through the fun
tionality of a library,thus the requirements of the s
ript must be mated to that library. One
ould mat
h therequirements dire
tly, if they were to assume the \large" version of the library des
ribed inSe
tion 4.2.1. However, that se
tion
lari�es why the use of su
h a library is not employedin this work. Thus, we assume that some form of redu
tion to requirements must take pla
e.The question then be
omes one of determining the language into whi
h these require-ments are translated. This determination has been largely di
tated to us by the abstra
tionsbehind the language itself. In Se
tion 3.2.1, details about the ne
essary abstra
tions under-lying the PLAWright language were given. It would seem
ertain that the language formwe employ to express the s
ript requirements must have the ability to express those ab-stra
tions. Certainly, though it is not stri
tly ne
essary, it
an also prove bene�
ial if this\down-translation" (from s
ript to requirements) is
apable of produ
ing s
ript-indu
ed-requirements that express higher-level needs. It is often advantageous to stay as
lose aspossible to the appli
ation (and the appli
ation language) so as not to lose information.Therefore, we deem it bene�
ial for any su
h
ode generator to have the ability to translate76

www.manaraa.com

down to various levels of feature abstra
tions so that it
an mat
h the library at the highestlevel possible. Alternatively, translation
ould o

ur in a step-wise fashion, where libraryfun
tionalities are mat
hed at the highest level available and further re�nement (down-translation) performed on a need-driven basis. As
an be seen in the implementationalarena (Se
tion 4.3.3), the former approa
h was sele
ted stri
tly for reasons of expedien
y.4.2.3 Annotating a LibraryIt might appear that the questions regarding the form of the language used to annotate thelibrary have already been answered. Se
tion 4.2.2 supplied details about how the abstra
tdown-translation is to o

ur, and it seems logi
al to assume that the library annotationsare to mat
h that language if a binding is to o

ur. Unsurprisingly, here, we do make thatassumption. Surprisingly, this is not the end of the subse
tion.It would seem that we are still left with some
hoi
es about the language we wishto use in order to annotate our �
titious library. We
ould:1. Use the target language of the s
ript requirements (lowest level).2. Employ PLAWright to annotate the library and the s
ript translation engine to \di-gest" those annotations.3. Exploit a
ombination of the �rst two ideas.We utilize the third option. However, for purposes of exposition, a mid-level format is usedto illustrate the realization of these annotations.4.2.4 Produ
ing OutputThe kind of output produ
ed has largely been determined by the methodologi
al approa
h wehave assumed: the use of some existing library or libraries. Sin
e interoperability
on
ernsare outside the s
ope of the resear
h
ompleted, we have restri
ted ourselves to a single
omputer language. Further, be
ause the existing s
ienti�
 libraries are usually writtenin an imperative language, most often C or Fortran, we restri
t our attention to thoselanguages.4.3 Implementation: An Automated LibraryThe software system depends on mat
hing s
ript requirements to the library fun
tionality.Thus, it avoids having to handle many of the diÆ
ulties involved when one deals with novelar
hite
tures by relying on a library expert. This expert is expe
ted to provide the (PLAN-ALYZER) system with
orre
t (fun
tionality and performan
e) annotations. Further, it isexpe
ted that the routines to be \mined" evin
e superb performan
e
hara
teristi
s.Those dis
laimers aside, not all is lost. In the dis
ussion of Se
tion 4.2.1 regardingthe design of a �
titious library, it was pointed out that the
ode generator
an
ompose77

www.manaraa.com

a fairly small number of primitive operations to implement an algorithm. This removes agood deal of the burden from the shoulders of the library expert as that individual
an besupplied with a short list of annotated and optimized fun
tions whi
h must be provided.While it is still true that the expert may have to do some work for this to be a
hieved, theburden is de
idedly eased when
ompared to traditional library building methods. In those
ases, supplying the kernel routines was the �rst of many steps; here, it marks the shift intoa far more automati
 method of development.4.3.1 Tools EmployedIn order to allow automated binding to an annotated library, a number of software toolswere used. The �rst step in the
hain of exe
ution is the ANTLR [61, 62℄
ompiler-
ompiler.Given PLAWright
ode, ANTLR was used to
ompile the s
ripted input into a fun
tionalprogramming form that was synta
ti
ally well-formed Mathemati
a input
ode. At thatpoint in the pro
ess, Mathemati
a [77℄ is utilized in order to perform the pattern-mat
hingne
essary to
ombine the requirements of the program with the fun
tionality provided bythe (annotated) library, and to translate this intermediate form into an exe
utable largely
omposed of
alls to the target library.4.3.2 PLAPACK: A Target LibraryWhen
oupling a s
ript to a library, it is bene�
ial for the library to be
onstru
ted ina

ordan
e with the same design philosophy re
e
ted in the s
ript language. PLAPACK iswell-suited to this goal, due to its layered stru
ture. Figure 4.5 illustrates the PLAPACKlibrary's layered nature and meshes ni
ely with this design goal.

Figure 4.5: The layered stru
ture of the PLAPACK libraryVery brie
y, the layering allows the naive user to program at a very high level, so asto intera
t stri
tly with high-level global routines and the shared-memory view a�orded bythe use of the (poorly named) \API" routines. The more expert user may exer
ise greater78

www.manaraa.com

ontrol of the pro
ess by utilizing the lower levels of the library. This allows the appli
ationprogrammer to
reate a working proof-of-
on
ept algorithm, and then to iteratively re�neit in order to maximize performan
e [2℄. The work presented here further eases this pro
essby automating optimizations and allowing the user to program at an even higher level ofabstra
tion if he so
hooses and to spend more of their energy on algorithmi
, rather thanprogramming, re�nement.4.3.3 Compiling PLAWrightThe
ompilation of a PLAWright s
ript is most easily thought of in terms of rewrite rules,syntax-based tranformations. One form of the implementation uses a simple table of rewriterules in order to perform this translation. As that is an approa
h that lends itself toexposition, that implementation is the one that is studied in this se
tion.Consider line 25 in Figure 4.2.A22 <- A22 - L21 * U12 ;After the stage of
ompilation handled by the ANTLR
ompiler tool has been performed,the intermediate form of the program is in a format that
an be parsed by Mathemati
a.The ANTLR tool also determines if the s
ript is synta
ti
ally
orre
t, but the Mathemati
aengine is responsible for determining whether or not the s
ript
an be transformed into anexe
utable program and, if so, how.When this line of
ode enters Mathemati
a it has the following form:AssignTo[A22, PLAMinus [A22, PLATimes[L21, U12 ℄℄℄whi
h is transformed, by default, into:AssignTo[A22, PLAPlus [A22, PLATimes[-1, L21, U12℄℄℄The
ode generator explores many paths of translation. Let us
onsider one of theeventual targets of this translation:PLAGemm[transa , transb , alpha , A , B , beta , C ℄We
an ignore the transx parameters, as the details might prove distra
ting. In orderto arrive at this format, the initial form must be transformed into one that mat
hes thePLAGemm[℄
all. The following line illustrates the format that must be mat
hed (the
he
ksof obje
t types that are in
luded in the rewriter are omitted for brevity). The following lineis intended to
apture the features of the PLA Gemm() library fun
tion, but the des
riptionis divor
ed from that parti
ular implementation.79

www.manaraa.com

AssignTo[C1 ,PLAPlus[PLATimes[alpha , A , B ℄,PLATimes[beta , C2 ℄℄℄A few topi
s need to be dealt with here. The �rst involves the fa
t that C1 andC2 both mat
h A22. This is allowable in uni�
ation as two variables
an mat
h the sameobje
t. The se
ond requires only slightly more explanation. Barring expli
it user dire
tivesto the
ontrary, the rewriting system
an
hange the order of the obje
ts involved in anaddition operation. Therefore,PLAPlus[A22, PLATimes[-1, L21, U12℄℄be
omes PLAPlus[PLATimes[-1, L21, U12℄, A22℄in one sear
h
hain. The third and �nal issue involves the multipli
ation by s
alars. Theoperation to be mat
hed in
ludes alpha and beta terms that are not in the originaloperation. This
an be handled in at least two ways. One solution is to default values to theoperations (in the
ase that no s
alar is supplied). Alternatively, one
ould build knowledgeinto the rewriter (e.g., that multipli
ation by 1 results in an obje
t with un
hanged values).The se
ond option was utilized in the engine for reasons of expedien
y, but this will likelybe
hanged in the future, as dealing with su
h things using a demand-driven approa
h tendsto be more
omputationally eÆ
ient.Given that the PLANALYZER eventually mat
hes:PLAGemm[transa , transb , alpha , A , B , beta , C ℄all that is left is the output of
ode. This is a simple step involving a simple Expression[℄to String[℄ rewrite inside Mathemati
a resulting in the output:PLA Gemm(PLA NO TRANS, PLA NO TRANS, ms
alarnegone, L21, U12, ms
alarone, A22);4.3.4 Annotating the Library: Fun
tionality ProvidedTo apply any operation, the pre
onditions of that operation must be met in order for thesemanti
s of the operation to be well-de�ned. Therefore, tests are applied in order todetermine if the fun
tion is appli
able to the \
urrent state" of the program, as seen throughthe eyes of the
ode-generation me
hanism. In order to advan
e the state of the program,the appli
able and required operations are applied to the
urrent state.Pre-Conditions: GuardsConsider a simple example
onsisting of the following one-line high-level program.80

www.manaraa.com

A A � C;The PLANALYZER attempts to mat
h this with the PLAPACK library's fun
tionality andafter some analysis identi�es the following
all as a possible mat
h.AssignTo[A, PLAPlus[PLATimes[ms
alarone, A, C℄,PLATimes [ms
alarzero, A℄℄℄where ms
alarone and ms
alarzero
orrespond to 1 and 0, respe
tively.The above is an instan
e of the library
allAssignTo[C , PLAPlus[PLATimes[a , A , B ℄, PLATimes[b , C ℄℄℄whose general fun
tionality isC (a � A � B) + (b � C)where a and b are uni�able variables that
an be thought of as being of type s
alar and A ,B , and C are uni�able variables of type matrix (with
onformal dimensions). The guardsspe
ify that neither A nor B
an be the same as C , therefore,AssignTo[A, PLAPlus[PLATimes[ms
alarone, A, C℄,PLATimes [ms
alarzero, A℄℄℄is not a valid transformation. Thus, a new variable, used to hold a
opy of A, is de
lared.This allows the use of a PLA Gemm()
all while satisfying the guards.This
reates the following
hain of operations:PLA_Matrix_
reate_
onf_to(A, &MATRIXTEMPA123);}PLA_Copy(A, MATRIXTEMPA123);}PLA_Gemm(PLA_NOTRANS, PLA_NOTRANS, ms
alarone, A, B,ms
alarzero, MATRIXTEMPA123);PLA_Copy(MATRIXTEMPA123, A);For reasons detailed in Chapter 5, this
ode will be reje
ted due to its inherentineÆ
ien
ies, but it is one of the paths that will be explored.Post-Conditions: Adds and DeletesTo advan
e the state of the
omputation, the operations are applied to the
urrent state. Forthe purposes of
ode generation, appli
ation means being added to the program under
on-stru
tion; in the
ontext of state advan
ement, it means having the appropriate propertiesadded to and deleted from the property set that
orresponds to program state.A simple example should
larify this pro
edure. Re
onsider the aforementioned\
hain" of
ode. 81

www.manaraa.com

1. PLA_Matrix_
reate_
onf_to(A, &MATRIXTEMPA123);}2. PLA_Copy(A, MATRIXTEMPA123);}3. PLA_Gemm(PLA_NOTRANS, PLA_NOTRANS, ms
alarone, A, B,ms
alarzero, MATRIXTEMPA123);4. PLA_Copy(MATRIXTEMPA123, A);At the outset (the non-existent line 0), matrix A had some state (size, shape,et
.) while MATRIXTEMPA123 had no su
h properties. After the exe
ution of lines 1 and2, MATRIXTEMPA123 has the same properties as A and
ould be used as a substitute for A.However, after the \exe
ution" of line 3, MATRIXTEMPA123 has had some of those propertiesdeleted (e.g. that its data
omponent is the same as A's), has had some left un
hanged (e.g.the size of the matrix), and has had some added (e.g. that its data
omponent is the produ
t
orresponding the matrix-multipli
ation). After the exe
ution of line 4, the properties ofthe two obje
ts again
oin
ide.4.3.5 Produ
ing OutputThe s
ript language must be translated into a
ompilable language. The viable alternativewould be to have the translation system transform the input down to the level of assembly
ode, but that part of optimizing-
ompiler te
hnology is not part of this dissertation (aswas alluded to in Se
tion 4.2.1). Therefore, the target language is an issue that must be
onsidered in the realization of the
ode generator.First, we must
onsider whi
h programming language(s) we wish to target. Manyissues arise in su
h a de
ision. Sin
e FLAMBE has been written in both Fortran and C, wetarget a parallel version of FLAME, PFLAMBE. 1The translation of the algorithm into eÆ
ient
ode has
learly de�ned lines of demar-
ation. This design de
ision allows language independen
e for as long as is possible in the
ompilation pro
ess. The strati�
ation of the FLAME ! PLAWright ! PLANALYZERsystem is su
h that new programming languages might be targeted in the future.4.3.6 A Realized Constru
tionWhen the PLANALYZER was supplied with the s
ript depi
ted in Figure 4.2, it produ
edmany di�erent
oding instantiations. One of these is depi
ted in Figure 4.6While the generated library routines shared many traits, they did evin
e some dif-feren
es. The most
ommon of these was the
reation of temporary obje
ts for the storageof matri
es that would a
t as temporary
opies for the
omputations performed. In the
ase of Eager LU fa
torization, this seems rather illogi
al, but, it is not universally so. Forexample, if the following
omputations were to o

ur:1PFLAMBE is a sugar
oated extension of the PLAPACK language expressed in the FLAMBE manner.PFLAMBE was sele
ted to be the target language be
ause its format is not in
ux. In addition the use ofPFLAMBE allows us to study more deeply nested memory hierar
hy issues in Chapter 5.82

www.manaraa.com

1 for(;;)2 {3 PLA_Obj_global_length(ABR, &PLAEnderLength);4 PLA_Obj_global_width(ABR, &PLAEnderWidth);5 if(PLAEnderLength == 0 && PLAEnderWidth == 0) break;6 PLA_Obj_split_size(ABR , PLATOP , &PLAlength2, &dummyint);7 PLA_Obj_split_size(ABR , PLALEFT , &PLAwidth2, &dummyint);8 nb = min (PLAlength2 , PLAwidth2);9 PLA_Obj_view_all (ATL, &A00);10 PLA_Obj_vert_split_2(ATR, nb , &A01, &A02);11 PLA_Obj_horz_split_2(ABL, nb , &A10,12 &A20);13 PLA_Obj_split_4(ABR, nb, nb , &A11, &A12,14 &A21, &A22);15 PLA_Lo
al_LU(A11);16 PLA_Trsm(PLA_SIDE_LEFT , PLA_LOWER_TRIANGULAR , PLA_NOTRANSPOSE ,17 PLA_UNIT_DIAG , ms
alarspe
ialone , A11 , A12);18 PLA_Trsm(PLA_SIDE_RIGHT ,PLA_UPPER_TRIANGULAR , PLA_NO_TRANSPOSE ,19 PLA_NONUNIT_DIAG , ms
alarspe
ialone , A11 , A21);20 PLA_Gemm(PLA_NO_TRANSPOSE , PLA_NO_TRANSPOSE ,21 ms
alarspe
ialnegone , A21 , A12 , ms
alarspe
ialone , A22);22 PLA_Obj_join_4(A00, A01,23 A10, A11, &ATL);24 PLA_Obj_horz_join_2(A02,25 A12, &ATR);26 PLA_Obj_vert_join_2(A20, A21, &ABL);27 PLA_Obj_view_all(A22, &ABR);28 }29 Figure 4.6: Central loop of
reated
ode for the Eager variant of LU fa
torization

83

www.manaraa.com

A <- B * C;A <- E;D <- B * C * B * C;it might make sense to
reate shadow storage for the B * C result. In any event, the same
ompiler te
hnology that is used to determine how to allo
ate registers most eÆ
iently
anbe employed here for entire matri
es.Later, in Chapter 5, we revisit why su
h di�eren
es exist among the produ
ed
odinginstan
es and what they lend the system as a whole.4.3.7 LibrariesWe fo
us on two libraries that have very similar fun
tionality for the purposes of the resear
hpresented here.S
aLAPACKThe S
aLAPACK library is a parallel extension of the LAPACK library designed for maximal
ode re-use. The goal of the S
aLAPACK proje
t is to implement all of the LAPACKroutines in an eÆ
ient manner on a variety of parallel ar
hite
tures. Through
ode reuse(of the LAPACK library), the proje
t attempts to use existing optimized and tested serial
ode on ea
h pro
essor of a parallel ma
hine. This is done through an intermediate level
alled the PB-BLAS (Parallel Blo
ked BLAS) [14℄ in an attempt to supply users with alayered-library.Unfortunately, it is our opinion that S
aLAPACK to sa
ri�
es some design
oher-en
e, or at least readability, in order to gain this
ode-leverage. This is not surprising as the
hara
ter of the software is heavily in
uen
ed by the bottom-up nature of this approa
h.Higher-level parallel routines may
all lower-level parallel (or serial) routines that do notshare the same design goals. This may result in unfortunate
ommuni
ation penalties. Fur-ther, the parallel versions of serial subroutines tend to have many additional parameters,due to the in
reased indexing
omplexity. This tends to make these routines somewhatdiÆ
ult to use and the underlying library somewhat diÆ
ult to maintain.In addition, S
aLAPACK ties itself to the BLACS
ommuni
ations library. Whilethe
oupling of two libraries may or may not be a problem, there appear to be some problemswith the BLACS in that there are simple global
ommuni
ations patterns that it appearsto la
k.PLAPACKLike S
aLAPACK, PLAPACK [74℄ is a library that
an be used for doing dense linear algebraon parallel
omputers. PLAPACK di�ers from S
aLAPACK in that it is an obje
t-based
onstru
t that insulates the user from error-prone index
omputations through the use of84

www.manaraa.com

\views." Views allow obje
ts to
o-referen
e portions of the same data (e.g. parent obje
tsmay hold data that
an be manipulated by any number of
hildren).4.3.8 Library BindingA
laim is sometimes made that no
lass2 of user wishes to view the libraries that they utilizeas bla
k box routines. This stands in
ontrast to the fa
t that the typi
al user of a pa
kagesu
h as MATLAB is assumed not to
are about what is underneath. In truth, it is often the
ase that users do not wish to have to know what is going on underneath, but want the optionof as
ertaining and leveraging su
h knowledge. Proje
ts su
h as FALCON [20, 57, 19℄ havebeen very su

essful in automati
ally restru
turing MATLAB
ode into languages su
h asSage++ and Fortran90. More re
ent e�orts su
h as Broadway [50℄ have made strides towardsallowing the user to produ
e high-performan
e
ode while programming in a somewhat naivemanner. This is fa
ilitated by a sophisti
ated, optimizing
ompilation system. This obviatesthe need for expertise to some degree, but allows for the leveraging of programmer-originatedoptimizations.It is important to note the synergisti
 role between library and
ompiler in these
ases. FALCON utilizes little information about the relationships between routines in thelibraries that it uses. Conversely, Broadway exploits su
h information and bene�ts from thelayered
onstru
tion of libraries PLAPACK.4.4 Experimental ResultsThe PLANALYZER is a proof-of-
on
ept implementation. In Se
tion 2.8, a number of em-piri
al tests were performed with FLAME as the methodology under study. In this se
tion,I demonstrate the eÆ
a
y of the PLANALYZER as regards
ode generation by applying itto a number of algorithmi
 variants and versions. These algorithms exhibit di�ering levelsof
omplexity and the resulting
odes evin
e di�erent performan
e
hara
teristi
s.In this dissertation, the
on
epts underlying an automated system that
ould be usedto generate
omputer
ode and analysis for linear algebra algorithms have been dis
ussed.Viewing the
omponents in the
ontext of the automated system as a whole yields an imageakin to the one seen in Figure 4.7.4.4.1 Generating Parallel LU Fa
torizationIn order to
reate a hybridized algorithm, one must �rst generate a number of variants ofthe algorithm under
onsideration. When using the PLANALYZER, the next step involvestranslating the algorithms into an input format a

eptable to the PLAWright
ompiler. Itis at this time that these s
ripts are annotated with performan
e and analyti
al dire
tives ifthese spe
ializations are desired. Finally, the s
ripts are
oupled with the annotated library2It may be the
ase that some individual users do wish to do so.85

www.manaraa.com

Figure 4.7: The \grand s
heme" of things as has been dis
ussed.in order to generate
ode and
orresponding performan
e analysis. This se
tion
overs thesesteps and analyzes the results.Generating the AlgorithmsUsing the FLAME methodology (see Chapter 2), �ve
ommon variants of LU fa
torizationwere systemati
ally generated as is detailed in Se
tion 2.4. Be
ause the Eager varianttended to yield the best performan
e for large problems exe
uted on parallel ma
hines, itwas sele
ted for spe
ialization in the remainder of the experiments
on
erning di�eren
esbetween algorithmi
 versions.Generating the S
riptsAs is dis
ussed in Chapter 3, the barrier between FLAME and the PLANALYZER is bridgedby
onverting the algorithm into an ASCII representation. The di�eren
es between the wayin whi
h we might depi
t an algorithm in a te
hni
al report and this ASCII version wereexamined in Se
tion 3.2.1. Some of these s
ripts were spe
ialized for the parallel environmentthat was to be the target ar
hite
ture (PLAPACK v3.1 exe
uting on a Cray T3E). Themethods employed to perform this spe
ialization were des
ribed in Se
tion 3.1.3.86

www.manaraa.com

The S
ripts: DetailsLet us brie
y des
ribe the
odes that were analyzed by the PLANALYZER system. First,there were the �ve algorithmi
 variants of LU fa
torization. A
orresponding version, interms of
omplexity, of ea
h variant was used for both the
ode generation and analysistests. The
ommon thread between these variants has to do with the sub-problem of LUfa
torization. In ea
h
ase, the submatrix to be fa
tored was lo
alized (via expli
it s
riptdire
tives) so as to exist on one pro
essor. No further dire
tives were supplied. The variantstested were:1. Eager LU Fa
torization2. Lazy LU Fa
torization3. Row-Lazy LU Fa
torization4. Column-Lazy LU Fa
torization5. Row-Column-Lazy LU Fa
torizationIn order to further explore the
apabilities of the analysis engine, the Eager variantwas spe
ialized through both annotation and dire
t manipulation of a form of the
ode thatwould not be available to the
asual user. The versions studied were:1. Eager1: The s
ript was spe
ialized to enfor
e a 1 by 1 blo
king. The intermediate
ode was hand-massages in order to avoid the
all to the LU fa
torization of the 1 by1 blo
k (avoiding a fun
tion
all that would result in a NO-OP).2. Eager2: The s
ript was spe
ialized to enfor
e a 1 by 1 blo
king as well as expli
itly
reating a dupli
ated-everywhere obje
t (a multis
alar) to hold the portion to befa
tored. Annotations were also added so that the would
all lo
al PFLAMBE routinesfor the triangular solves. The intermediate
ode was hand-massages in order to avoidthe
all to the LU fa
torization of the 1 by 1 blo
k as well as the triangular solveinvolving a unit-diagonal 1 by 1 matrix.3. Eager3a: Annotations to the s
ript for
ed the LU-fa
torization subproblem (A11),to exist on a single pro
essor. This resulted in an LU subproblem of the distributionblo
king size. Further, fun
tion override was used to for
e the Eager1 algorithm(above) to be utilized for fa
toring the LU subproblem.Eager3b: Annotations to the s
ript for
ed the LU-fa
torization subproblem (A11),to exist on a single pro
essor. Further, fun
tion override was used to for
e the Eager2algorithm (above) to be utilized for fa
toring the LU subproblem.4. Eager4: Identi
al to Eager3a/3b ex
ept that fun
tional override was used to for
ea
all to a handwritten lo
al LU kernel whose performan
e was assumed to be that ofa \standard" level-2 BLAS routine (about 10% of pro
essor peak) when solving theLU de
omposition subproblem. 87

www.manaraa.com

5. Eager5: The same as Eager4 save for the fa
t that the s
ript was annotated tofor
e a dupli
ation of the obje
t to be fa
tored (a
opy into a dupli
ated-everywheremultis
alar). This allowed the appli
ation of lo
al triangular solves, so the s
ript wasannotated to enfor
e that optimization (via the use of .<-, instead of <-, assignmentdire
tives).6. Eager6a: Partitions the matrix to be fa
tored into sub-blo
ks that are of the algo-rithmi
 blo
king size (64) rather than the distribution blo
king size (16). Fun
tionaloverride was employed in order to
all Eager4 for the LU subproblem. All otheroperations were global.Eager6b: Identi
al to Eager6a, save for the fa
t that the LU subproblem was han-dled by Eager5.Eager6
: Identi
al to Eager6a, save for the fa
t that the LU subproblem was handledby Eager1.Generating CodeThe s
ript variants were, in nature, similar to the one depi
ted in Figure 4.8. Ea
h of theexamined variants was given the same level of annotated dire
tion (see Se
tion 4.4.1) toprodu
e the versions examined.The
odes produ
ed resembled the program in Figure 4.9. For purposes of pre-sentation,
omment bars were pla
ed around the se
tion of
ode that makes this a Lazyalgorithm, the name was
hanged from the unique name generated by Mathemati
a to Lazyand the lines
ontaining variable de
larations and obje
t \free"s were abbreviated.A number of
ode instantiations were produ
ed from ea
h s
ripted variant input.The number of instantiations
ould prove misleading so the reader should bear in mindthat the number is the produ
t of the number of instantiations available for ea
h line ofthe s
ript involving an operation and, more importantly, that most of the
odes generatedwere suboptimal. The reason for this latter o

urren
e is detailed in Se
tion 4.3.6 and is aproperty of the prototype nature of the PLANALYZER system. The
ode generation engineand the analysis engine were not employed in
on
ert.The number of
ode instantiations produ
ed:1. Eager LU Fa
torization: 842. Lazy LU Fa
torization: 843. Row-Lazy LU Fa
torization: 5884. Column-Lazy LU Fa
torization: 5885. Row-Column-Lazy LU Fa
torization: 5292While only random samples of the generated
odes were examined, the more eÆ
ient
odes tended to
orrespond to those that have been generated by hand.88

www.manaraa.com

1 L has_property unit_lower_triangular ;2 U has_property upper_triangular ;3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;910 do until ABR is 0 by 011 partition / ATL # ATR \12 |###########|13 \ ABL # ABR /14 => / A00 # A01 | A02 \15 |#################|16 | A10 # A11 | A12 |17 |-----#-----------|18 \ A20 # A21 | A22 /19 where A11 is lo
al and20 A11 is lo
ally square and21 A11 is nb by nb ; // No larger than this2223 A01 = U01 <- L00^-1 * A01 ;24 A10 = L10 <- A10 * U00^-1 ;25 A11 = (L11\U11) <- A11 - L10 * U01 ;26 A11 = (L11\U11) <- lu_fa
t(A11) ;2728 partition29 / ATL # ATR \30 |###########|31 \ ABL # ABR / <= / A00 | A01 # A02 \32 |------------------|33 | A10 | A11 # A12 |34 |##################|35 \ A20 | A21 # A22 / ;36 enddo;37 L =!= A;38 U =!= A;Figure 4.8: PLAWright-
ompilable s
ript for a Lazy version of LU fa
torization
89

www.manaraa.com

1 #in
lude "mpi.h";2 #in
lude "PLA.h"3 int Lazy(PLA_Obj A)4 {5 <variables are de
lared>6 PLA_Obj_template(A, &MyTemplate);7 /*Create usual
onstants*/8 PLA_Create_
onstants_
onf_to(A,&ms
alarspe
ialnegone,&ms
alarspe
ialzero,&ms
alarspe
ialone);9 /*UserWarning: Square ShapeSpe
 not yet enfor
ed ... rule not fired*/10 PLAlength1 = 0 ;11 PLAwidth1 = 0 ;12 PLA_Obj_split_4(A, PLAlength1, PLAwidth1 , &ATL, &ATR, &ABL, &ABR);13 for(;;) {14 PLA_Obj_global_length(ABR, &PLAEnderLength);15 PLA_Obj_global_width(ABR, &PLAEnderWidth);16 if(PLAEnderLength == 0 && PLAEnderWidth == 0) break;17 PLA_Obj_split_size(ABR , PLA_SIDE_TOP , &PLAlength2, &dummyint);18 PLA_Obj_split_size(ABR , PLA_SIDE_LEFT , &PLAwidth2, &dummyint);19 nb = min (PLAlength2 , PLAwidth2);20 PLA_Obj_view_all (ATL, &A00);21 PLA_Obj_vert_split_2(ATR, nb , &A01, &A02);22 PLA_Obj_horz_split_2(ABL, nb , &A10, &A20);23 PLA_Obj_split_4(ABR, nb, nb , &A11, &A12, &A21, &A22);24 /**/25 PLA_Trsm(PLA_SIDE_RIGHT , PLA_UPPER_TRIANGULAR , PLA_NO_TRANSPOSE ,26 PLA_NONUNIT_DIAG , ms
alarspe
ialone , A00 , A10);27 PLA_Trsm(PLA_SIDE_LEFT , PLA_LOWER_TRIANGULAR , PLA_NO_TRANSPOSE ,28 PLA_UNIT_DIAG , ms
alarspe
ialone , A00 , A01);29 PLA_Gemm(PLA_NO_TRANSPOSE , PLA_NO_TRANSPOSE , ms
alarspe
ialnegone ,30 A10 , A01 , ms
alarspe
ialone , A11);31 PLA_Lo
al_LU(A11);32 /***/33 PLA_Obj_join_4(A00, A01, A10, A11, &ATL);34 PLA_Obj_horz_join_2(A02, A12, &ATR);35 PLA_Obj_vert_join_2(A20, A21, &ABL);36 PLA_Obj_view_all(A22, &ABR);37 }38 < obje
ts are freed>39 } /*End of Program*/Figure 4.9: PLAPACK/PFLAMBE
ode produ
ed by the PLANALYZER
90

www.manaraa.com

4.5 Chapter SummaryWhile
omputer
ode relies on what is underneath it, a \paper library" is not similarlydependent. Su
h a library assumes
ertain underlying fun
tionality; it need not des
ribe,down to the \bones" of the hardware, everything that must be done. This allows an expertin a higher-level domain to supply a library that needs to have its slots �lled [57℄. Thetraditional method supplies the pegs instead of the pegboard [5℄.The important point is that a library either has to have the \right" level of modular-ity or multiple levels of modularity. Either avenue allows the user to program in a reasonableway, but it might be that only the latter situation really allows for ma
hine-dependent op-timizations to be
arried out.The automated
ode generation system des
ribed in this dissertation is an attemptto supply the \best of both worlds" to the user. The s
ripts would be
onsidered under-spe
i�ed and employing the PLANALYZER allows the automated
oupling of this \paperlibrary" to an underlying, en
oded library.

91

www.manaraa.com

Chapter 5Automati
 Analysis of anImplementationThis
hapter presents an analysis strategy and a prototype implementation that utilizes theapproa
h presented in this resear
h work. This is important to the resear
h presented herebe
ause the ability to determine the
omplexities and
osts of algorithms is useful when
onstru
ting and maintaining linear algebra libraries.First, the synergisti
 relationship between analysis and the design strategy, alreadypresented, is introdu
ed. Then the various \formats" of analysis are mentioned along withadditional information regarding the parameters the analysis engine is intended to ana-lyze. Finally, the potential intera
tion between the analysis tool and the algorithmi
 s
riptlanguage is dis
ussed.5.1 MotivationRe
all the example of Eager LU fa
torization illustrated in Figure 5.2. We
onsider the taskof analysis by examining a s
ript annotated with dire
tives su
h as those given on lines 20and 22-32 of that Figure. An example s
ript may be seen in Figure 5.3, while an illustrationdepi
ting this
hapter's pla
e in the overall s
heme of the do
ument is depi
ted in Figure 5.1.Noti
e that the s
ript in Figure 5.2 makes only minor
on
essions to issues of imple-mentation. The only indi
ation that the s
ript is intended for a parallel ar
hite
ture lies inthe annotations related to determining the size and data lo
ality of A11. By way of
ontrast,the PLAWright
ode in Figure 5.3 not only
ontains dire
tives that relate to the role of A11in matrix partitioning, but lower-level
ode that enfor
es where
omputation takes pla
e byexpli
itly handling the
ommuni
ations involved. Further, that same s
ript requires that aspe
i�
 routine (PLALu1) be used to perform the lo
al LU fa
torization and that the analysisengine should ignore what is in the performan
e se
tion of the annotated library and applythe line-by-line performan
e measures in
luded in the s
ript.92

www.manaraa.com

Figure 5.1: Where the analysis system �ts into the \grand s
heme" of things.The task of analyzing the \simpler" s
ript by hand involves a number of hurdles.First, one must determine what routines are involved. Then one must determine the per-forman
e
hara
teristi
s of those routines. After one has determined su
h
hara
teristi
sfor ea
h operation in the s
ript, it is ne
essary to apply the analysis as the loop exe
utesand the partitioning
hanges the size and shape of ea
h obje
t. While the appli
ation ofline-by-line, annotated
omplexity estimation (as is seen in Figure 5.3) is also error-pronewhen done by hand, it does obviate the need to determine the performan
e
hara
teristi
sof the routines involved. In either
ase, the task then be
omes making the resultant formulauseful in some manner.There seems to be no es
aping these problems unless one automates the pro
ess.Given an underlying library that is not \smart" (i.e. one that does not
hoose the bestalgorithm for the required operation), the simpler s
ript for
es the analyst to sort throughall appli
able routines in the library in order to determine the best routine available. Anintelligent library attempts to pi
k the most eÆ
ient
oding unit for ea
h operation, but thismakes the analysis task onerous be
ause \the best"
hanges as the matrix sizes and shapes
hange throughout the
ourse of exe
ution. While the highly annotated s
ript's analysisburden is un
hanged, the a

ura
y of that analysis is questionable in this
ase be
ause agreat many simplifying assumptions are impli
it in the per-line dire
tives.Therefore, automating the system of
ode produ
tion in su
h a way that the pro-93

www.manaraa.com

1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is implied2122 A11 = (L11\U11) <- lu_fa
t(A11) ;23 A12 = U12 <- L11^-1 * A12 ;24 A21 = L21 <- A21 * U11^-1 ;25 A22 <- A22 - L21 * U12 ;26 partition27 / ATL # ATR \28 |###########|29 \ ABL # ABR / <= / A00 | A01 # A02 \30 |------------------|31 | A10 | A11 # A12 |32 |##################|33 \ A20 | A21 # A22 / ;34 enddo;35 L =!= A;36 U =!= A;Figure 5.2: Computer-readable s
ript for Eager version of LU fa
torization
94

www.manaraa.com

1 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)2 U === A ; // {Re
ursive} {Permanent}3 L has_property unit_lower_triangular ; // (* Permanent Property *)4 U has_property upper_triangular ;5 A has_property square ; // (* A
tually, Square here *)6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR / => / A00 # A01 | A02 \13 |#################|14 | A10 # A11 | A12 |15 |-----#-----------|16 \ A20 # A21 | A22 /17 where A11 is lo
al and18 A11 is lo
ally square and19 A11 is nb by nb ; // No larger than is really implied20 Performan
e performan
e_override("2*nb*nb*nb/3");21 fun
tion_override("PLALu1");22 A11 = (L11\U11) <- lu_fa
t(A11) ;23 EndPerforman
e;24 Performan
e performan
e_override("B
ast(nb * nb * 1/2) to PCC");25 Lower[L11tri℄ |* <- Lower[L11℄ ;26 EndPerforman
e;27 A12 = U12 .<- Lower[L11tri℄^-1 * A12 ;28 U11tri -* <- Upper[U11℄ ;29 Performan
e performan
e_override("1/2 * nb * nb * Max(Length(Lo
al(A21)))");30 A21 = L21 .<- A21 * Upper[U11tri℄^-1 ;31 EndPerforman
e;32 Performan
e performan
e_override("B
ast(nb * Max(Length(Lo
al(L21)))) to PCC");33 L21
ol |* <- L21 ;34 EndPerforman
e;35 U12row -* <- U12 ;36 A22 .<- A22 - L21
ol * U12row ;37 EndPerforman
e;38 partition39 / ATL # ATR \40 |###########|41 \ ABL # ABR / <= / A00 | A01 # A02 \42 |------------------|43 | A10 | A11 # A12 |44 |##################|45 \ A20 | A21 # A22 / ;46 enddo; Figure 5.3: Annotated s
ript for Eager version of LU fa
torization
95

www.manaraa.com

du
ed
ode and the produ
ed analysis rooted in the same pro
ess is a promising avenue ofresear
h and it is detailed in this
hapter.5.2 Issues5.2.1 Why Performan
e Is ImportantIt seems to be taken for granted that performan
e is important, but why is that? It is oftenthe
ase that an individual does not need an answer immediately. Further, until Moore'sLaw runs out of steam, we are fa
ed with an ever-faster array of pro
essors. Thus, expendinge�ort on optimizing
ode in order to improve performan
e by a few per
ent may involveunwise allo
ation of resour
es.Certainly, this is a questionable pra
ti
e if that optimization e�ort takes a great dealof time and has limited value. Chapter 3 sought to address the issue of programming easeand speed. If performing this optimization requires a small investment of expert resour
es,it may make sense to do so. In addition, it does not do mu
h good to predi
t tomorrow'sweather if the task is not
ompleted until the day after tomorrow; some problems are su
hthat they
an take advantage of both the fastest ma
hines and the fastest algorithms.5.2.2 Why Performan
e Analysis Is ImportantA basi
 question that may be asked is: \Is performan
e analysis ne
essary?" Obviously,it is not. There are many numeri
al libraries, both abstra
t and
on
rete, devoid of anyanalyti
al tools. However, there are drawba
ks to that approa
h.The �rst, and probably most important, disadvantage is seen when attempting tooptimize su
h a library for a new ar
hite
ture. Without formulai
 guidelines it is diÆ
ultto predi
t how any given
hange will a�e
t the performan
e of di�erent parts of the exe-
utable. Similarly, it be
omes diÆ
ult to determine where optimization e�orts should be
on
entrated. One may be unable to readily determine if the problem lies in the algorithmor in a spe
i�
 realization of that algorithm. Sin
e there is no systemati
ally predi
tedperforman
e, there
an be no \red
ags" that indi
ate unexpe
tedly poor performan
e [37℄.Predi
ting Performan
eTrying to remedy systemati
 de�
ien
ies by running a empiri
al tests is also an ill-
onsideredapproa
h. This method is time-
onsuming and tends to be resour
e-intensive. More impor-tant, the results of a large number of these tests may be required in order to determine whatparts of the algorithms are responsible for
ost overruns. While it may be possible to takea large amount of empiri
al data along with information about shared sub-
omponents ofthe algorithms and use statisti
al analysis to determine where the bottlene
ks are, it wouldbe problemati
 to do so for at least two related reasons.The �rst roadblo
k to this approa
h is the huge amount of data ne
essary for su
han analysis when dealing with a large, monolithi
 library. There are simply too many96

www.manaraa.com

variables to make this purely statisti
al method pra
ti
al. The se
ond problem is even morefundamental and diÆ
ult to over
ome. Potential \feature intera
tion" would require thatan exponential number of test
ases be analyzed.There are a number of sour
es for poor library performan
e, but all
an be said tobe in one of two major
ategories:1. Routines with poor predi
ted performan
e.2. Routines with performan
e that is poor (although not ne
essarily predi
ted to beso) [37℄.It is not always the
ase that the hindran
es
an be
lassi�ed as belonging ex
lusively toeither
ategory unless one employs a modeling strategy.Determining the Sour
es of Performan
e Short
omingsThe algorithm itself is a potential sour
e of ineÆ
ien
y. As this is the
ore of an implementa-tion, it
an be the sour
e of the greatest di�eren
es in a
hieved performan
e. Analysis toolsmay not
onstru
t a superior algorithm from an inferior one. However, they
an be usedto indi
ate the short
omings in an algorithm and, possibly, to suggest algorithmi

hangesthat will result in superior performan
e. These
lues may result from
ontrasts between twoalgorithms intended to perform the same task, or from a mismat
h between the performan
ethat the user predi
ts, based on experien
e with similar algorithms, and the performan
epredi
ted by the analyti
al engine (with its built-in knowledge of the underlying algorithmi
and ar
hite
tural intera
tions).It is not surprising that the implementation of the algorithm
an be the sour
eof variations in performan
e. There are some potential sour
es of ineÆ
ien
y that applyonly to the parallel
omputational
ase, while others apply to both the serial and parallelinstan
es. These sour
es in
lude the use of improper
ommuni
ation algorithms, a mismat
hbetween theoreti
al models and real ma
hines, and unfortunate assumptions about the useof pro
essor and memory resour
es and their intera
tions.We note that it is sometimes diÆ
ult to determine when the performan
e failings arethe result of poor algorithmi
 design or implementation details. For example, if one takes ahigh-level view, it is possible to predi
t superior performan
e in an algorithm. Yet, one mayknow that the algorithm will translate into an implementation that has poor performan
eregardless of the real ma
hine used. Alternatively, this poor performan
e may be
ompletelydependent on the details of the underlying
omputational system.Code SteeringWe wish to have the PLANALYZER sele
t the \best" algorithm in a given situation, butwe also wish to equip the end-user/programmer with the ability to guide the system to aroutine/method that he believes is better (or wishes to study). Therefore, whatever methodsare used, (in
remental) user-intera
tion should be kept in mind even if the software doesnot present a \point-and-
li
k" type of interfa
e.97

www.manaraa.com

5.2.3 Convenien
e vs. Performan
eThe analysis framework and tools should help to assuage a typi
al fear about s
riptedlanguages. Namely, that they are
onvenient to use, but their performan
e tends to bepoor. A

epted wisdom holds that trying to retain this ease of expression as one migratesto a parallel environment is likely to exa
erbate these problems. One
an �nd any numberof examples where this \rule of thumb" does, in fa
t, hold true [20℄.The development system presented here attempts to address both
onvenien
e andperforman
e
on
erns. Allowing this freedom is an e�ort to strike a balan
e between toomu
h and too little guidan
e being provided by the software. It is made possible by makingthe ability to
leanly mix the layers of annotation and s
ripting a
entral
on
ern.There are a number of ways in whi
h this work deals with performan
e
onsidera-tions. We assume that the underlying library (the target of s
ript translation) is made upof eÆ
ient routines. Therefore, a s
ript translated into a set of
alls to that library shouldalso be eÆ
ient.If the performan
e of the existing
ode segments is analyzed properly and if a sys-temati
 way of gluing them together intelligently to perform the new algorithm
an be
onstru
ted, high-performan
e should be a
hieved. Here, \high" is de�ned to be as perfor-man
e
omparable to that whi
h someone intimately familiar with the underlying library
ould e�e
t.User Bene�tsThe potential bene�ts yielded by our analysis tools, largely mirror those of hand
raftedanalysis. Analysis tends to provide guidan
e for algorithm and implementation tuningalong with information regarding
ase-spe
i�
 proximity to optimal performan
e.While this sort of a
tivity
an be done by hand, it is made mu
h easier by
omputerassistan
e in a number of ways. First, when one is dealing with a large library, the individualanalysis tasks are time-
onsuming. The determination of relationships and intera
tionsbetween routines is more so. In addition, from a psy
hologi
al point of view, this a
tivityrequires shifting ba
k and forth between di�erent
on
erns and that tends to impose an evengreater time penalty on the designer.The most obvious bene�t to analysis tools is the ability to qui
kly and dynami
allydetermine the
omplexity of a given algorithm or implementation. This allows the designerto determine the eÆ
ien
y of the algorithm at various levels of detail. One does not have towaste time tuning an algorithm of inherently sub-optimal
omplexity. Further, when dealingwith a multi-tiered algorithm, the analysis may reveal patterns a
ross and intera
tionsbetween di�erent levels and modules.While the analysis system may not suggest solutions for unne
essary intera
tions,
ouplings, and dependen
ies, it
an make them obvious to the experien
ed designer andmore apparent to the novi
e. In a similar manner, the analysis system may reveal
aseswhere the spe
i�
ity of the situation is not being taken advantage of by the designer.98

www.manaraa.com

User ResponsibilitiesThe responsibilities of the motivated user who wishes to exploit all of the abilities of theanalyzer are too situation-dependent to be detailed here. This se
tion, instead, gives andintrodu
tion to the features and requirements of the system as they relate to the \
asual"user. The user must supply input to the analyzer in a form that the analyzer
an read.However, the programmer need not be
on
erned with how heavily annotated his s
ripts arebe
ause the output form of analysis is not entirely dependent upon the form of the input.The other matter is the spe
i�
ation of the output. There are many potential formsthat output might take. While there are default settings, the PLANALYZER also allows forthe spe
i�
ation of di�erent ways in whi
h to measure (e.g. operation
ounts, time takenet
.), di�erent forms of expression, and exa
tly what to measure (e.g.
ommuni
ation timeonly).5.2.4 Traditional Approa
hesTypi
ally, algorithmi
 analysis in this area has been both manual and somewhat ad ho
. Theusual s
enario involves the analysis of an algorithm as a stand-alone example. The reasonsbehind performan
e di�eren
es in variations on an algorithm are largely hidden be
ause ofthe monolithi
 nature of the analysis.5.2.5 Problems with Traditional Approa
hesWhile su
h an analysis may be a

urate, it is not as useful as it might be. Without asystemati
 approa
h to the analysis of a family of algorithms, it is diÆ
ult to determine the
omparative advantages and disadvantages of the algorithms. Spe
i�
ally, this approa
h isof severely limited value in the
onstru
tion of hybrid or polyalgorithmi
 variants [40, 56℄.5.2.6 A New Approa
hGiven a systemati
 approa
h
arried through the design of a library, one
an analyze al-gorithms that rely on the
omponents of that library. It is the intera
tion between levelsof the library that tends to make this analysis diÆ
ult. A
onsistent approa
h in librarydesign leads to a
onsistent pattern of intera
tion.Resear
h into the issue of hybridization [40℄ gave us some insight into how useful thesystemati

onstru
tion of the algorithms and the layering of the library were when it
ameto a

urately modeling the target
omputational environment. Preliminary tests showedthat these analyti
al models were reasonably a

urate.This systemati
 nature also provides for the
onstru
tion of automated analysis tools.These tools allow for a more systemati
 and informed approa
h to the optimization task thatis typi
ally so onerous in the absen
e of a uni�ed approa
h, let alone su
h an automated tool.The
entral idea is that the performan
e annotations mirror the
ode that, in turn, mirrors99

www.manaraa.com

the algorithm. Thus, to use the tool, one only need be an \expert" in the
onstru
tion ofalgorithms.By
ompiling the algorithmi
 s
ript into both a fun
tional program and an analyti
al
ode readable by theMathemati
a [77℄, symboli
 manipulation pa
kage, one
an intera
tivelydevelop and analyze these algorithms immediately, in the same, automated environment.Further, these analyses need not be tied to a single set of expressive primitives, su
h as timerequired, but may be re-formulated in terms of operation-
lass
ounts, et
.5.2.7 Coupling Code and Performan
eThe module-dependen
y graph of a systemati
ally
onstru
ted, layered library has fewerleaves than that of a haphazardly
onstru
ted library providing
omparable fun
tionality. Ifwe implement our own
ommuni
ations library in terms of some set of primitives, we havemore
ontrol and fewer mi
roben
h tests to perform. The same approa
h
an be extended toa very low level, but there is a trade-o�. We must determine how sophisti
ated to make the
ode ! performan
e parser and the right balan
e to strike between readability, a

ura
y,and work-intensity. Annotating the library at too high a level, results in a

ura
y at the
ost of having to ben
hmark and annotate too many routines. Doing so at too low of a levelmakes the intermediate form of performan
e
ode diÆ
ult to simplify. It is logi
al to makethe annotations look like
ode to as great an extent as possible so that both are readableand so that it is not ne
essary to learn a new \language" for ea
h task.Library StrataOne of the most basi
 reasons for the requisite
exibility of the modeling strategy is thatwhat
omprises an \operation"
hanges as one pro
eeds in designing, implementing, andre�ning an algorithm. For the tool to be useful it must be able to address the needs of thedesigner as his view of the operations
hanges. While this
an be motivated in the sequentialarena, it is more straightforward to do so in the
ontext of a parallel environment.Consider a simple algorithm like the outer-produ
t
omputation that was dis
ussedin the LU de
omposition algorithm. Obviously, in the distributed
ase there are a number ofways to de�ne what it means to perform a matrix-matrix multipli
ation. For instan
e, thereis the entire multipli
ation: A22 A22�~a21~aT12. Even if we ignore details of implementation,we may
onsider the time spent performing the
al
ulation to be restri
ted to the timespent doing so on a given pro
essor. We may wish to ignore time taken to perform themanipulations involved. Further, we may
onsider some of the implementational issues thatarise as part of the SUMMA algorithm. We may wish to perform the matrix multipli
ationwith a set of
olumns (e.g. A21 instead of ~a21) in whi
h
ase \the multipli
ation" may beany of the
omponent multiplies, global or lo
al, of this larger multipli
ation. Therefore,the analysis system must allow a shift between these di�erent views.Independent of the form the analysis takes, two fundamental questions must beanswered:1. What qualities are to be analyzed? 100

www.manaraa.com

2. In what quantitative terms should these qualities be expressed (i.e. what are the\units" of analysis)?In the area under study, the answers to these questions are readily available. Theanalysis system measures the time and memory required to perform a given algorithm.Su
h qualities have generally a

epted unit-measures; time is generally measured in CPU(milli-/mi
ro-) se
onds while memory used is measured in (kilo-/mega-) bytes.While these two answers provide all that one may require from a system geared topurely pra
ti
al analysis, the features that they enable may not be suÆ
ient for a
exibleanalyti
al tool for a number of reasons. The most basi
 diÆ
ulty is that these measurementquanta may not allow the measurements to be expressed in a manner desired by the user.For example, if one wishes to determine the number of matrix-matrix produ
ts that areperformed, time and spa
e
omplexity measures may not ne
essarily yield useful information.However, intelligent stru
turing and base-level spe
i�
ations yields a set of
onstru
ts that
an be used to express both. Further, there are guidelines that help one to determine thekinds of primitives that must be provided if a
ertain kind of feedba
k is desired.Parameters of AnalysisOne should be able to use
ase-spe
i�
 information during the analysis of an algorithm.Certain measures have no meaning if one does not have a ma
hine model, but do not requirea ma
hine instan
e in order to be de�ned. Other measures require a fully-spe
i�ed ma
hine(and problem) environment in order to have meaning. Given these fa
ts, the analyzer isdesigned around a set of primitives that yield great
exibility in these areas. Furthermore,to fa
ilitate feedba
k in the desired format, the underlying language should provide for thedynami
 (user-based)
reation of new \
on
epts."Let us be more
on
rete. The useful obje
t-based abstra
tions under
onsidera-tion: manipulation,
al
ulation, and property determination, have already been dis
ussedin Chapter 3. Almost any non-trivial algorithm uses all of these abstra
tions. Therefore,the analysis must involve, or allow the involvement of, all three. The
aveat in regards toallowing the in
lusion of measures for some abstra
tions is in
luded as one may also wishto ignore
ertain measures. Most obviously one might wish to dis
ount property determina-tion as this
al
ulation is often
omputationally trivial. Further, one might wish to ignoremanipulation time and spa
e
omplexity. Alternatively, when one wishes only to
onsiders
alability issues, it is often
onvenient to ignore everything ex
ept the time spent in themanipulation (
ommuni
ation) subsystem. It is not diÆ
ult to
reate other
ases whereinone might wish to
onsider only parts of some of the abstra
tions while ignoring others.There are many ways to
onstru
t the framework of this analysis system and theimplemented
omputational engine. It seems ne
essary to allow the user a great deal of
ontrol over the primitives and
on
epts
omposed from those primitives. However, it wouldseem that there should be a
ertain \default" setting that is both
exible enough to providea tool for users with many disparate needs and
onventional enough to provide feedba
k in aformat that is
ommonly seen in papers on the analysis of similar algorithms. The primitives101

www.manaraa.com

provided should be useful in a wide range of analysis tasks. This is be
ause the extension ofthe PLANALYZER through the in
lusion and de�nition of new primitives requires greaterexpertise than is pra
ti
al to expe
t.While it may seem a bit
onfusing to mix terminology with regard to analyzingalgorithms and analyzing programs, perhaps it should not. In a distributed
omputationalenvironment, it may be possible to ignore the model versus implementation distin
tion. It isprobably most useful to think of physi
al
omputational systems as somewhat
ompli
atedmodels. This is not a new idea; any system
an be mimi
ked with a
omplex enough modelvia su

essive re�nement. This dissertation fo
uses on providing a useful model as wellas a systemati
 way to determine a base set of primitives that have to be evaluated soas allow the determination of fully quanti�ed results. We are
on
erned with the
laritywith whi
h the tool under
onsideration here supplies information. However, the goal ofautomating the kind of performan
e pro�ling that has traditionally been done by hand isalso a
onsideration.Analysis of ComponentsIn order to perform analysis by
omposing \building blo
k" analyti
al modules, some baselevel of analysis must be determined. The simplest form of
omposition would be theunadorned addition of these
omponents (formulae). In this se
tion, we assume that thisis how analysis is
arried out. Later se
tions dis
uss why this simple approa
h may beinsuÆ
ient.The previous se
tion dis
ussed some of the issues that need to be
onsidered inthe
onstru
tion of the analysis tool. Among these was the determination of what is tobe measured, in what terms that measurement is to be expressed, and what makes upthe primitive set. Let us, for the moment, restri
t ourselves to a small but useful set ofmeasurements; the �; �; and
 time-
omplexity set. Here, � is the start-up
ost for amessage, � the
ost per item sent, and
 the time per
omputation. This is a simple view,spe
ialized for the distributed
omputing
ase. However, there are analogies to � and � ina serial ar
hite
ture, and multiple
s
an be used, so this model is useful.The next task is to determine whi
h
omponents must be measured. The last se
tiondis
ussed why this is a question. Let us suppose that we have made a utilitarian de
ision.If we wish to analyze a library, we
an express the lowest layer (the leaves) in terms of theprimitive measures (the �; �; and
 mentioned previously) and des
ribe the other layersin terms of those beneath them. There is a trade-o� between a

ura
y and annotativeexpedien
y with this approa
h favoring the latter.While the assumption is that the library is layered, this is not stri
tly ne
essary.Many modern software pa
kages, su
h as Sni�+ [12℄, automati
ally determine the
allingstru
ture of a set of routines. From this dire
ted graph, it is possible to
onstru
t a
om-plexity model from the leaves \in." While this situation is not optimal, it does not presentan insurmountable blo
k to the analysis strategy dis
ussed in this
hapter.One problem that may o

ur to the reader involves the modeling of the leaves. Theleaves do not rely upon any other (visible) routines. Typi
ally, one performs empiri
al102

www.manaraa.com

measures on these
omponents for various problem and
omputational grid sizes and thenuses something akin to a line of best-�t to express their
omplexity. These routines oftenhave performan
e
hara
teristi
s whi
h are dependent on problem-spe
i�
 details su
h asoperand shape. The user needs to determine the level of a

ura
y that they require of theanalysis system in order to determine how highly re�ned the base-level analyti
 models needto be.Synthesis of Component-AnalysisWe assumed that the analysis of a
omponent that utilizes other analyzed
omponents asbuilding blo
ks was a solved problem. Let us
onsider the fa
t that we may eventually wishto simplify the resulting analyses. In that
ase, to analyze a
omponent it may be bene�
ialto synthesize the analysis of the sub-
omponents whi
h make up the routine (
omponent)to be analyzed.The most obvious appli
ation of \synthesis" is the simpli�
ation of the impli
itsummations that o

ur over a looping
onstru
t within a routine. On
e the summation ismade expli
it, simple mathemati
al substitutions
an be made to redu
e the
omplexity (asmeasured by lexi
al length) of the expression.It should be pointed out that this synthesis is not always a good idea. For, if oneperforms the synthesis at the lowest level, it may be
onsiderably more diÆ
ult to
ombineexpressions at higher levels without sa
ri�
ing a

ura
y.5.3 Contributions of the Systemati
 UnderpinningsApproa
hing the design of linear algebra algorithms in a systemati
 fashion redu
es the dif-�
ulty of the analysis task. Our approa
h to algorithmi
 and library
onstru
tion tends tosimplify and make expli
it the relationships between di�erent parts of the programs as theyrelate to overall performan
e. Often, implementors optimize algorithms in a
ompartmen-talized fashion. They rely on intuition and experien
e rather than
omplexity measures todrive their optimizations and tend to view ea
h improvement without
onsidering its impa
ton the larger pi
ture.Perhaps this is almost unavoidable when the routines to be optimized are parts ofa library with no underlying framework. The analysis required in su
h a
ase
ould bemonumental. There are two major roadblo
ks to be
onsidered:� Monolithi

onstru
tion methodology and� Modular, but poorly thought out,
onstru
tion pra
ti
esIf the library is modularized, the di�erent routines tend to
all on one another. However,modularity does not imply design soundness, and these relationships between modules maynot follow any dis
ernable pattern. The
ombination of these two properties
ompli
ates theanalysis task. The monolithi
 alternative may seem preferable as that strategy avoids the
ompli
ations
aused by module intera
tions. Unfortunately, that approa
h yields a new103

www.manaraa.com

analysis task for every derived algorithm and fails to provide any sort of framework fromwhi
h to gain leverage from the analyses already performed. Not only does this result in morework for the analyst [70℄, but it also seems to disallow even the possibility of determiningmeaningful patterns unless the spe
i�
ation of the sub-
omponents is systemati
.Conversely, if the software system is built with a uni�ed approa
h and utilizes asystemati
 methodology to build the algorithms, not only is the
onstru
tion pro
ess eased,but the analysis is
onsiderably less
ompli
ated. The design pro
ess allows one to followthe framework of the supplied algorithms. Sin
e analysis tasks
an mirror the stru
ture ofthe obje
ts of their analysis, they
an be
onstru
ted top-down, bottom-up, or middle-outalong with those algorithms. It should also be noted that the algorithmi
 design
ould followthe analyti
al work.Many of these bene�ts
ome \for free" when the modularity of the software is pre-sumed to be logi
al and easily understood. However, most of them are simply enabled bythis systemati

onstru
tion. There is still something of an onus on the (low-level) designerto spe
ify the fun
tionality,
omplexity types, parameters, and measures to the analysisengine, but it should be noted that:1. The layered
onstru
tion, in
on
ert with the FLAME methodology, eases the deter-mination of the patterns seen in a given algorithm and2. The formulai
 spe
i�
ation of these patterns opens the door for a systemati

lassi�-
ation of these patterns [43℄).5.3.1 Modularity of the Analyti
 HarnessThere has already been
onsiderable dis
ussion about the various uses of and advantages toan integrated analysis strategy and system. This se
tion attempts to point out the di�eringimpa
t that su
h tools have on various types of libraries.One must
onsider the manner in whi
h a designer would intera
t with the designsystem. Thus, the �rst subse
tion deals with issues related to hand-built software systems aswell as presenting some synthesis of the relevant ideas already dis
ussed. The next subse
tiondeals with the more pertinent ideas in relation to automated library
onstru
tion. Giventhe
ookbook nature of the algorithmi

onstru
tion and analysis, systemi
 automatizationappears to be a realizable goal.Impa
t on Manually Assembled SystemsTypi
ally, a library, even if
onstru
ted in a very systemati
 way, is hand-written by pro-grammers (or non-programmers in the
ase of \paper" libraries mentioned in Se
tion 4.5).Sin
e this approa
h to library
onstru
tion is the one most appli
able to both well designedand poorly designed libraries, let us
onsider what
an be done in the latter
ase (as theformer has mu
h in
ommon with the automated situation dis
ussed in Se
tion 5.3.1).While the well-integrated,
exible analysis tools dis
ussed here are not entirelyamenable to use in a \disorganized" environment, it might be possible to gain some ad-104

www.manaraa.com

vantage from them. If the analyst is willing to delve into the parti
ulars of the
ompositionand analysis stru
ture, it may be possible to regain some of the
exibility possessed by thetools in the more well organized
ase.The �rst assumption is that the
ode to be analyzed is neither written in the s
riptlanguage nor in a style that mirrors that language. This assumption is made be
ause if itis written in that style, the analyzer
an be used on the s
ript or on something that
an bereverse-engineered from the
ode.The easiest way to use the analysis tools in this
ase would be to hand-translate thegiven
ode into the
orresponding s
ript. One might have to translate a number of routinesinto the s
ript language before getting meaningful feedba
k from the automated system.However, the user might wish to de
lare the routines themselves as primitives, or use theanalysis engine's abilities to rede�ne \
on
epts," and supply their own
omplexity measuresfor the routine.This approa
h is may result in analyses that la
k
omprehensibility or fail to re
e
talgorithmi
 modi�
ations. Both of these problems
an be ameliorated to some degree ifthe user is
areful in their design of primitives and
on
epts, making them
ompatible withthe remainder of the automated analysis engine. While it may be that the engine la
kssome of its former ability to simplify the resultant equations, little should be lost in termsof re
e
ting algorithmi

hanges if the user is
areful to provide layers similar to thosedis
ussed here. The analysis engine should also be modular and layered as is the
ase withthe prototype under
onsideration in this
hapter.Impa
t on Automated SystemsWe now begin a dis
ussion regarding how the analysis engine may aid the automationpro
ess and how automation makes the analysis
hore simpler. At the same time, we needto address what is required of the user.Given an automati
 tool for the
onstru
tion of these algorithms, this system mightbe used to hybridize algorithms already instantiated. Given an algorithm for
omputingfun
tion A using method I, the system presented in this dissertation
ould generate methodsII and III. Ea
h method has its advantages and disadvantages. Often determining when onealgorithm is superior to another is a
omplex task. Given an engine that generates equationsthat
an be evaluated on the
y, su
h hybridization would be
ome me
hanized. This sameapproa
h
ould prove useful in the
ase that several levels are simultaneously hybridized.However, it be
omes less reasonable to ignore evaluation (sele
tion) time as one goes downto lower levels of the memory hierar
hy.Many of the issues relevant to the analyti
al tool are independent of this generator.Su
h a tool
ould be used to sele
t the \best" algorithm from a library, even when thatlibrary has nothing to do with the system des
ribed here, provided that some sort of \hand-shaking" between requirements and provided servi
es [30℄
an be performed. If the system
an determine that a given routine ful�lls the requirements of a given \
all," then the system
ould take pre-evaluated information about these \gray box" routines and determine whi
hvariant is optimal in a given situation. 105

www.manaraa.com

5.4 Implementation: Automated AnalysisThus far we have dis
ussed what is desirable in the abstra
t. Now, we delve into issues ofimplementation. To review the
urrent stage of the pro
ess as it now stands, the reader isreferred to Figure 5.4. In parti
ular, the reader's attention is dire
ted to the two boxes inthe lower-right quadrant of that Figure.

Figure 5.4: The position of the analysis engine in the
ontext of the implemented system.5.4.1 An Analysis-Ready S
riptLet us
onsider a s
ript presented in the pre
eding
hapter, Figure 4.4 (page 75). Re
allthat this algorithm is a version of the Eager variant to LU fa
torization. In that s
ript, theuser expli
itly
ontrols the data distribution so that only lo
al
omputations (
omputationalkernels) are required. In Figure 5.5, a repli
ation of Figure 5.3, two lines (25 and 28) of thiss
ript are annotated with their asso
iated
ost.5.4.2 Explanation of S
ript Extensions and Line-Cost EstimatesA few questions may arise upon viewing this annotated s
ript (Figure 5.3). For example,one might ask why some of the lines have no asso
iated
ost. This s
ript re
e
ts a somewhatarbitrary de
ision. The rationale is that those operations that have a
ost whi
h does not106

www.manaraa.com

1 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)2 U === A ; // {Re
ursive} {Permanent}3 L has_property unit_lower_triangular ; // (* Permanent Property *)4 U has_property upper_triangular ;5 A has_property square ; // (* A
tually, Square here *)6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR / => / A00 # A01 | A02 \13 |#################|14 | A10 # A11 | A12 |15 |-----#-----------|16 \ A20 # A21 | A22 /17 where A11 is lo
al and18 A11 is lo
ally square and19 A11 is nb by nb ; // No larger than is really implied20 Performan
e performan
e_override("2*nb*nb*nb/3");21 fun
tion_override("PLALu1");22 A11 = (L11\U11) <- lu_fa
t(A11) ;23 EndPerforman
e;24 Performan
e performan
e_override("B
ast(nb * nb * 1/2) to PCC");25 Lower[L11tri℄ |* <- Lower[L11℄ ;26 EndPerforman
e;27 A12 = U12 .<- Lower[L11tri℄^-1 * A12 ;28 U11tri -* <- Upper[U11℄ ;29 Performan
e performan
e_override("1/2 * nb * nb * Max(Length(Lo
al(A21)))");30 A21 = L21 .<- A21 * Upper[U11tri℄^-1 ;31 EndPerforman
e;32 Performan
e performan
e_override("B
ast(nb * Max(Length(Lo
al(L21)))) to PCC");33 L21
ol |* <- L21 ;34 EndPerforman
e;35 U12row -* <- U12 ;36 A22 .<- A22 - L21
ol * U12row ;37 EndPerforman
e;38 partition39 / ATL # ATR \40 |###########|41 \ ABL # ABR / <= / A00 | A01 # A02 \42 |------------------|43 | A10 | A11 # A12 |44 |##################|45 \ A20 | A21 # A22 / ;46 enddo;Figure 5.5: Optimized s
ript for Eager method of LU fa
torization with performan
e anno-tations
107

www.manaraa.com

depend on the size of the obje
t and are low enough so as to be
onsidered \noise" areignored and others are assigned the
omplexity measures
orresponding to the performan
eannotations provided by the library. Our fo
us is on the on the
riti
al path of exe
utionand those fun
tions whi
h
ontribute to it. Thus, global operations are the items of greatestimport and re
eive the most attention in the analysis phase. The se
ond easily motivatedquestion regards the line-by-line
ost assignment. One
ould have assigned a
ost to theentire s
ript or to every do-enddo loop as both are viable alternatives. However, the analysisissues that arise are more easily motivated by this line-by-line
ost-assignment te
hnique.Given the annotated s
ript and the summation expression re
e
ting the
ost of thes
ript (seen in Se
tion 5.4.3), a few questions arise. The two that relate to the annotationsthemselves are the most easily dispensed with. The Max(Width/Length(Lo
al(obje
t))) issimply a fun
tional programming notation for determining the maximum size of the obje
tin a given dimension over the set of nodes (i.e. how mu
h is held by the node that holds themost). This is done be
ause this maximum tends to be the bottlene
k for the algorithm. These
ond is the \Broad
ast" fun
tion. This
an be repla
ed \underneath" by any method ofbroad
ast and the analyti
al annotation re
e
ts the
omplexity of the algorithm employed.The expression re
e
ting the
ost of the algorithm embodies a number of impli
itassumptions. While these assumptions are not stri
tly enfor
ed in the analysis engine, theyare useful in order to present a simple example. As was mentioned above, the Broad
ast maytake pla
e in a number of ways. Therefore, its
ost depends on the ma
hine ar
hite
ture andthe manner in whi
h the broad
ast is performed. Here, for simpli
ity, a two-dimensionalmesh is assumed, and the broad
ast pro
eeds via a minimum spanning tree algorithm.While this
onvention regarding the broad
ast is logi
al and not greatly limiting, the se
ondsimplifying assumption is a bit more restri
tive. In order to present a
on
ise summaryformula, we have assumed three things:1. That the distribution blo
king size is the same as the algorithmi
 blo
king size.2. That the size of the matrix (n) is an integral multiple of this blo
king size (nb).3. That we have used a blo
k-
y
li
 distribution in both dimensions.In Se
tion 5.6 these restri
tions are relaxed. In su
h
ases, a

ura
y tends to
omeat the
ost of intelligible
ost expressions.5.4.3 Analyti
al ResultComputing the total time required for the parallel LU fa
torization, TLU(n; r;
; b) thusrequires us to evaluateTLU(n; r;
; b) = n=bXi=1 �23b3
 + Tb
ast(b2;
) + b3dn� ib
b e
 + Tb
ast(b2; r) + b3dn� ibrb e
+ Tb
ast(b2dn� ib
b e; r) + Tb
ast(b2dn� ibrb e;
)108

www.manaraa.com

+ 2bdn� ib
b edn� ibrb e
�where b equals blo
k size nb, r and
 are the row and
olumn dimensions of a two-dimensionalpro
essor grid, i equals the iteration index, Tb
ast(m; p) equals the
ost of broad
asting mitems within p pro
essors, and
 is the
ost of a
oating-point operation.While this expression
an be easily evaluated, given a
ost estimate for the broad
ast,it is typi
ally useful to have a more
ompa
t estimate for the
ost. For example, if one wantedto dynami
ally
hoose between di�erent implementations, a
heap estimate of the
ost mustbe available. Derivation of su
h an estimate is straightforward, but tedious and error-proneif done by hand. Thus, we have
reated a prototype system employing Mathemati
a that
an take the s
ript input and generate a
ost estimate that is
ompa
t in form. However,this estimate may not be of great informative value.5.4.4 The Use ofMathemati
a Module[℄sThus far, the performan
e
hara
teristi
s have been dis
ussed with little spe
i�
ity aboutwhat the annotations in
lude or what form they take.Sin
e the fo
us of the dis
ussion is limited to imperative languages, su
h as Fortranand C, it seems that the level of the subroutine or pro
edure
all is
ertainly the most
onvenient lo
ation in whi
h to pla
e this annotative information. It should be pointedout that fun
tional supply (what the routine furnishes) and performan
e
hara
teristi
s aretwo separate ideas, but
an both be viewed as meeting the requirements of a programmer.Further, it is important to note that various language
onstru
ts (sele
tors, loops, et
.)
anbe thought of as meta-subroutines. Combining a loop with a routine
reates a new routinewith di�erent performan
e
hara
teristi
s;
hara
teristi
s that are
al
ulable from the two
omponents involved.5.4.5 Performan
e Estimates: Dis
rete FormulaeDis
rete formulae arise from the analysis of the algorithms under study in this do
ument. As
an be seen in Se
tion 5.4.3, one possible analysis format is the result of summing togetherall of the individual operation
ounts on a per-loop basis.Why Dis
rete Formulae AriseAll
ommonly used modern
omputer ar
hite
tures are dis
rete. It should not be surprisingthat a model of these systems gives rise to dis
rete mathemati
al formulae.Algorithms from the area of linear algebra,
an also give rise to dis
retized equationswhen one des
ribes their
omplexity.Problems with this FormatAs we see above, the expression that results is somewhat unintelligible,
luttered as it is withsummations and
eiling fun
tions. Su
h results tend to be diÆ
ult to interpret. They are109

www.manaraa.com

also poor formats for determining performan
e pro�les, espe
ially when many parametersmay be varied simultaneously.5.4.6 Closed-Form ExpressionsWhile dis
rete analysis allows for a

urate modeling, it tends to fall short in presenting theuser with understandable information. Typi
ally, the lexi
ally shorter approximations areworked out by hand. The
onstants involved are tedious to
al
ulate for various ma
hinear
hite
tures. In order to do so, it is often the
ase that a number of simplifying assumptionsare in
orporated. It is sometimes the
ase that these assumptions have a great impa
t onthe reliability of the resulting formula. It is our goal to design the analysis system so thatthe task is eased and this impa
t is minimized.A Numeri
al (a.k.a. A Statisti
al) TreatmentOf
ourse, a number of data points from dis
rete analysis
an be taken as guides for su
hthings as a least squares �t to a fun
tion of a known degree and form. While determiningthis degree is not always simple, it is usually reasonably straightforward be
ause of knownalgorithmi

omplexity properties. Using modern tools su
h as Mathemati
a or Matlab, thediÆ
ulty is less in the determination of a line of best �t than in giving meaning to the
oeÆ
ients that des
ribe that line. The
urrent state of the PLANALYZER system is su
hthat that these equations
an be generated, but the
oeÆ
ients have no expli
it
onne
tionto the parameters of the pro
edure analyzed.Highly Simpli�ed ModelsBe
ause the analyti
al system is symboli
, it is relatively straightforward to generate
losed-form results by sa
ri�
ing a

ura
y. For example, instead of
omputing the time taken toperform operation X, the analyti
al engine
an
ount the number of times operation Xwould be
alled and produ
e a result of the form #X. The same idea
an be used to yield
ounts of di�erent
ategories of fun
tions,
ounts of fun
tions that run at some per
entof the pro
essors peak rate, et
. While this form is not what is typi
ally referred to as\
losed," there are
ases where this might provide more useful information to the developer.For example, if the programmer is attempting to move operations from level-2 to level-3BLAS, it would likely be bene�
ial to determine if various
hanges to the
ode were havingthe desired e�e
t. The method outlined above would automate that pro
ess.5.4.7 More Pra
ti
al Con
ernsSome issues only have a pla
e when the dis
ussion is grounded in implementation. Thoseissues are presented, brie
y, here.
110

www.manaraa.com

Viewing the Pro
essor SetThere are two ways that one
an view the pro
essor set when it
omes to the analysis of analgorithmi
 implementation:� uni�ed and�
omponent-wiseThe view of the pro
essor set as uni�ed ignores the individual di�eren
es betweenthe pro
essor's work sets as well as any di�eren
e between the
omponent pro
essors. Thelatter simpli�
ation may be
onsidered harmless be
ause heterogeneous
omputer systemsare not
onsidered in this do
ument be
ause of the
omplexity that their design in
i
ts onany su
h analysis [13℄.There are a number of approa
hes to uni�ed pro
essor modeling. The approa
hused in the prototype system presented here
ould be
alled \single-
ase" based. The PL-ANALYZER determines the best/worst/average
omplexity during any given step of the
omputation (where a step may be de�ned to any level of granularity) and sums up thesesteps, in whatever manner, to yield the result. Many other approa
hes are possible. Onesu
h approa
h would be interval-based. Su
h a system keeps tra
k of a set of
ases (e.g.best and worst) and
al
ulates not a single
ost, but the interval over whi
h the
osts mayrange. The approa
h that we sele
ted seemed
apable of providing the information requiredand is more typi
al of the analyses traditionally seen in the area.The single-
ase based model also appeared to be the most appropriate as our interestwas in
onstru
ting a proof-of-
on
ept system that addressed the
omplexity of the
riti
alpath of the
ode/ar
hite
ture under
onsideration. Therefore, modeling those algorithmi
steps that would likely prove bottlene
ks in the exe
ution of the
ode was the foremost
on
ern. As
an be seen by studying the results presented in Se
tion 5.6 this strategy
an yield highly a

urate results when many operations are global and involve
olle
tive
ommuni
ations. In su
h
ases, determining the steps along the
riti
al path
an be donevia the use of a model that la
ks mu
h of the detail that would be required to mirror theunderlying library with total a

ura
y.5.4.8 Load Balan
eThe analysis s
heme should have the ability to deal with load balan
e. This is not to saythat it should do anything about �xing existing load imbalan
es past revealing them to thedesigner.The term \load imbalan
e" is typi
ally taken to mean raw
omputational imbal-an
e. In other words, di�erent pro
essors have di�erent operation
ounts. This is a validinterpretation of the term, but the meaning of the term
an be extended in a number ofways. One of the
hief sour
es of optimization diÆ
ulties is the insuÆ
ient re�nement ofpro
essor timing di�eren
es. While very high-level abstra
t ma
hine models do not evin
e111

www.manaraa.com

operation speed di�eren
es, useful ones usually do. Therefore, the analyzer must modelnot only the number of (basi
) operations done, but also the (relative) speed at whi
hthe target ar
hite
ture is
apable of doing them. This
an be done by a very detailedmodeling of the underlying ar
hite
ture, spe
i�
ally the memory hierar
hy and timing, orthrough the
reation of a base set of operators that fa
ilitate the exposure of these timingimbalan
es. The work outlined here takes the latter approa
h;
hampioning the use of a(
exible) framework so that these di�erent \kernel" rates and
omplexities may be spe
i�ed.In addition to allowing the proper level of performan
e resolution, the analysis sys-tem requires the ability to re�ne the view of the pro
essors. It is important to note thatthis does not mean that the analyzer must \imitate" the pro
essors in a lo
kstep fashion.As in the
ase of the kernel
omplexities, it is important that the design system allow theuser to tune the spe
i�
ity of their input to mat
h the detail level that they require in theanalysis system's output for at least two reasons. First, it requires extra work to providesu

in
t information when the analysis engine is provided with a highly detailed system\map." Se
ond, it is impossible for the analysis to provide highly a

urate feedba
k if theinformation provided is at too high a level. The latter is not surprising, but it is importantthat the former be pointed out be
ause it often takes
omputational and programing e�ortfor an automated analysis tool to disregard information provided to it.5.5 Related WorkMany of the papers in this area are almost ex
lusively empiri
al in their treatment of thepresented algorithm(s) [33℄. Su
h work presents an algorithm then dis
usses various issuesthat revolve around a
oded instan
e of the algorithm under
onsideration along with somereal-world experimental (timing) results. Often, work that is more s
holarly dis
usses thepresented algorithms in terms of su
h things as
omplexity measures. These are oftenfollowed by empiri
al results as \proof" of the
orre
tness of the more abstra
t resultantformulae [24, 70, 31, 53℄.5.5.1 Monolithi
 AnalysisThe analysis of individual routines is often done in something of a va
uum. Usually, thisapproa
h is taken when one's goal in analyzing an algorithm is to obtain maximum a

ura
y.By viewing the algorithm under
onsideration as a unit, all of the
omputational issues
anbe ta
kled in order to yield an a

urate re
e
tion of the performan
e of the algorithm. Thedownside of this approa
h is that it gives little leverage for ta
kling the next analysis task.5.5.2 Ad-ho
/Component Sums Based AnalysisAt the opposite end of the spe
trum is the
omponent-sums approa
h to analysis. Thisapproa
h simply glues together the results of the analysis of the pie
es
omprising theoverall algorithm. This allows for the rapid synthesis of analyti
al
omponents, but themanner in whi
h these
omponents intera
t is not modeled and often diÆ
ult to determine.112

www.manaraa.com

5.6 Experimental ResultsIn Se
tion 4.4, a number of variants and versions of the LU fa
torization algorithm werepresented along with a dis
ussion regarding the
ode generated by the PLANALYZER. Inthis se
tion, the same intermediate-language form that is translated into C
ode is insteadtransformed into a form of
ode that serves to model the performan
e
hara
teristi
s of theresultant program as it exe
utes on the target ar
hite
ture.5.6.1 Automated Analysis GenerationThe analysis presented in this experimental se
tion is numeri
, not symboli
, in nature,as it would require a good deal of analysis e�ort on the part of the author to determinewhether the analysis was
orre
t in the latter
ase. In order to evaluate the a

ura
y of theperforman
e estimates generated by the analysis engine, it was most expedient to
omparethe numeri
al estimates generated with the witnessed empiri
al performan
e on the targetar
hite
ture.In essen
e, the analyti
al engine works by exe
uting the analysis s
ripts that aregenerated along with the exe
utable
ode. The performan
e estimates for the leaves of thePFLAMBE software ar
hite
ture were the result of a great deal of experien
e with the
ode-generation system and the
omputational environment under study, but were not as pre
iseas ben
hmarks would have been. However, this level of detail would allow for a more rapidalteration of the analysis engine so as to produ
e symboli
 results, so was left as is. As we
an see in the next subse
tion, the estimates a

urately re
e
t the performan
e of smallerproblems as well as illustrating performan
e trends for ea
h of the
ases examined.5.6.2 Analysis vs. Witnessed Performan
eIn all
ases of
omparison between estimated and witnessed performan
e in
luded here, testswere performed on an 80 node Cray T3E (lonestar.hp
.utexas.edu). While the algorithmswould have run on non-square
omputational grids, only square grids of sizes 2� 2, 4� 4,and 8� 8 were tested. The same tests were performed in all
ases with a few provisos. Theglobal size of the (square) matri
es tested ranged from order 32 to order: 4096, 8192, and16384 for the 4, 16, and 64 node
ases, respe
tively. However, due to resour
e limitations,some of the
omputationally ineÆ
ient algorithms were not tested with the largest matrixsizes. The analyti
al system would have predi
ted the timeouts that o

urred (one is givena maximal allotted time when one submits a job to the T3E), but it was not used for thispurpose.First, let us examine the predi
ted and witnessed performan
e of the �ve variantslisted in Se
tion 4.4. These results are depi
ted in line-graph form in Figure 5.6, Figure 5.8,and Figure 5.10 and in bar
hart form in Figure 5.7, Figure 5.9, and Figure 5.11. The shadeof the bar indi
ates the quality of the estimation, with bla
k being used if the estimates aremore than 20% o�, gray for 10%-20% o� and white for an error of less than 10%.113

www.manaraa.com

Figure 5.6: Ratio of predi
ted to a
hieved performan
e: 4 node Cray T3E

Figure 5.7: Bar graph indi
ating ratio of predi
ted to a
hieved performan
e for 4 node CrayT3E. From left-to-right the bars
orrespond to the Eager, Lazy, Row Lazy, Column Lazy,and Row-Column Lazy implementations. 114

www.manaraa.com

Figure 5.8: Ratio of predi
ted to a
hieved performan
e: 16 node Cray T3E

Figure 5.9: Bar graph indi
ating ratio of predi
ted to a
hieved performan
e for 16 nodeCray T3E. From left-to-right the bars
orrespond to the Eager, Lazy, Row Lazy, ColumnLazy, and Row-Column Lazy implementations.115

www.manaraa.com

Figure 5.10: Ratio of predi
ted to a
hieved performan
e: 64 node Cray T3E

Figure 5.11: Bar graph indi
ating ratio of predi
ted to a
hieved performan
e for 64 nodeCray T3E. From left-to-right the bars
orrespond to the Eager, Lazy, Row Lazy, ColumnLazy, and Row-Column Lazy implementations.116

www.manaraa.com

Now, we review the graphs
orresponding to the ratios of predi
ted/a
hieved per-forman
e for the four building-blo
k algorithms (eager1, eager2, eager4, and eager5) andexamine the same information regarding those routines that utilize these
omponents (ea-ger3a, eager3b, eager6a, eager6b, and eager6
).Figure 5.12, Figure 5.13, and Figure 5.14) indi
ate the performan
e of the building-blo
ks des
ribed in Se
tion 4.4, while Figure 5.15, Figure 5.16, and Figure 5.17 utilize thesebuilding blo
ks as their sub
omponent LU fa
torization.

Figure 5.12: Building blo
ks algorithms. Ratio of predi
ted to a
hieved performan
e: 4node Cray T3E5.6.3 Experiments: A SummaryThe studies in this
hapter were intended to demonstrate the utility of FLAME as a methodin the
ontext of the entire environment. While Se
tion 2.8.3 gave eviden
e that supportedFLAME's usefulness as both a pra
ti
al and pedagogi
al tool, the results given here areintended to lend support to the idea that mu
h of the FLAME method
an be automatedand that su
h me
hanization would prove useful.This
hapter also supplied eviden
e supporting the soundness of the
on
epts behindthe PLANALYZER. The automated part of the system proved
apable of:1. Creating many
ode instan
es from the same s
ript input.2. Generating
ode instan
es that utilized hand-made s
ript spe
ializations.3. A

urately determining the performan
e
hara
teristi
s of a number of
ode instanti-ations. 117

www.manaraa.com

Figure 5.13: Building blo
ks algorithms. Ratio of predi
ted to a
hieved performan
e: 16node Cray T3E

Figure 5.14: Building blo
ks algorithms. Ratio of predi
ted to a
hieved performan
e: 64node Cray T3E 118

www.manaraa.com

Figure 5.15: Algorithms utilizing building blo
ks. Ratio of predi
ted to a
hieved perfor-man
e: 4 node Cray T3E

Figure 5.16: Algorithms utilizing building blo
ks. Ratio of predi
ted to a
hieved perfor-man
e: 16 node Cray T3E 119

www.manaraa.com

Figure 5.17: Algorithms utilizing building blo
ks. Ratio of predi
ted to a
hieved perfor-man
e: 64 node Cray T3E4. Using this information to hybridize a set of variants and/or version to a
hieve superiorperforman
e.As these three goals are important when one is
onstru
ting s
ienti�
 libraries, wethink that the prototype holds up well as a proof-of-
on
ept. Within the PLANALYZER,the performan
e models
ould be re�ned to give results that are more a

urate or extendedto give results that are more meaningful.5.7 Chapter SummaryAs has already been dis
ussed in this
hapter, performan
e is usually a sought after
hara
-teristi
 in linear algebra
odes. In the
ase of library
odes, this quality is even more highlyprized be
ause performan
e is far more important in the
ase of an often-invoked routinethan in the
ase of a routine that is exe
uted only a few times.Of
ourse, while the typi
al measure of performan
e is speed (i.e. the length of timethe routine requires in order to exe
ute), there are often other
on
erns. In some
ases itis not just desirable, but vital to have a small memory footprint. Sin
e there are manyother axes by whi
h \quality"
an be measured, the tools should be
apable of handling anassortment of metri
s. Be
ause of the details of implementation, this work
an be extendedto handle su
h things. Further, the uni�ed nature of the development system fa
ilitatesrapid revision and spe
ialized optimizations.120

www.manaraa.com

Chapter 6Con
lusionGiven a limited amount of time and/or a language that is not domain-spe
i�
 and in
exible,it is often the
ase that one has to settle for the realization of less ambitious algorithms,little or no hybridization, one-of-ea
h routines (i.e. a monolithi
 software stru
ture), anddeal with problems in
ross-platform transportability.There are time and �nan
ial penalties involved when one utilizes ineÆ
ient
ode.Often, there is a potential trade-o�; greater resour
es
an be devoted to a problem in orderto bolster the short
omings of the
omputational system. These
an be in the form of humanor ma
hine resour
es. However, trade-o�s are sometimes unavailable and are often
ostly.In this dissertation, we present eviden
e that it is possible to
reate a developmentsystem that helps one in dealing with these problems. In this
hapter, we present, by topi
,the problems addressed and lessened by the approa
h and implementation des
ribed here.6.1 Design: FLAMEWhile it is the only step in the development pro
ess that is not automated, the design phaseis the
ore of the system. By deriving algorithms in a systemati
 manner and expressingthem in a regimented form, we have the basis for automating the rest of the system. Thismethodology and the relatively uniform nature of the resultant algorithmi
 depi
tions fa-
ilitate the generation of multiple routines with the same fun
tionality and, therefore, aneasier path to su
h things as algorithmi
 hybridization.Similarly, targeting spe
i�
 levels of a
omputational system by applying small mod-i�
ations to a uniform approa
h allows for verti
al integration. It fa
ilitates analysis sin
esimilar annotations are appli
able to similar routines throughout the hierar
hy. Exampleareas where this methodology has shown its eÆ
a
y range from the bottom of the memorypyramid with ITXGEMM, through PFLAMBE, to the top, POOCLAPACK, a parallel,distributed, out-of-
ore library.One example of an area where FLAME might prove useful in the future involves theuse of re
ursive data stru
tures for storing matri
es [48, 4, 46, 49℄. By storing matri
es by121

www.manaraa.com

blo
ks rather than row- or
olumn-major ordering, data reuse in
a
hes
an be enhan
ed.By
ombining this with re
ursive algorithms that exploit this data stru
ture, impressiveperforman
e improvements have been demonstrated. Re
ently, work at IBM's T.J. Watsonresear
h
enter and The University of Umea have shown the utility of a spe
i�
 type ofhierar
hi
al des
riptor/storage format for matri
es, namely re
ursive stru
tures that gohand-in-hand with re
ursive algorithms [29, 46℄.The
rux of the design philosophy, as it relates to performan
e is that there are twoimportant
hara
teristi
s of modern, parallel
omputers:
omputation and
ommuni
ation.Virtually, all performan
e gains o

ur in the optimization of a
omputational or a
ommu-ni
ation routine when we view things \in the small." In a library built upon routines thatultimately rely on a very small matrix-matrix multiply kernel, virtually all of the speed-upstems from
areful memory subsystem management. When
onsidering an out-of-
ore li-brary, there are more layers of memory to manage and the FLAME philosophy has been agreat aid in the
onstru
tion of su
h libraries.Many aspe
ts of the derivational approa
h we have des
ribed are systemati
: thegeneration of the loop-invariants, the derivation of the algorithm as well as the translationto
ode. However, while we have mu
h eviden
e to suggest that me
hanizing the pro
ess isa
hievable, there is mu
h work ahead.We have demonstrated that the system presented in this do
ument ful�lls its po-tential by dis
ussing how the te
hnique has been applied to di�erent
omputational envi-ronments.6.2 Language: PLAWrightThe end-user, using FLAME, should be able to en
ode algorithms rapidly, while introdu
ingfew errors. Both of these issues are addressed by having a programming language thatis synta
ti
ally similar to the language of design. If the designer and the programmerare one and the same, this \proximity" is useful be
ause it minimizes the possibility of amistranslation between the two forms of the algorithm. If the implementor and designer aretwo distin
t entities, this resemblan
e of form has an additional advantage, namely, lesseningthe likelihood of a misinterpretation of the design before it is translated into input for thesystem.En
apsulated, the bene�ts of the PLAWright programming language are:1. It
losely resembles the language of the algorithms.2. It
an be written at a very high level or at a lower level.3. The transition from general to spe
ialized is both smooth and
exible.4. It
an be des
ribed using typi
al
ompiler formalizations.
122

www.manaraa.com

6.3 Automated Code Generation: PLANalyzerTypi
ally, the
onstru
tion of a linear algebra library requires the implementation of a largenumber of algorithms. The derivation pro
ess advan
ed in this work is appli
able to thosealgorithms at the
ore of dense linear algebra, exhibits a systemati
 nature that lends itselfto rapid derivation, and produ
es algorithms in a form that
an be me
hani
ally translatedinto input for the PLANALYZER
ode produ
tion tool. Similarly, the
ode manufa
turingsystem
an address the same spe
trum of algorithms as the derivation system, is me
hani
al,and is relatively fast. Therefore, algorithmi

overage
an be qui
kly a
hieved by one familiarwith the derivation methodology.In the best of all possible worlds, the automati
ally generated
ode would also beprovably
orre
t. Given the formal approa
h provided by FLAME and the nature of the
ode generation fa
ilities presented in Chapter 4 of this dissertation, we think that this ispossible for the domain-spe
i�
 language presented in Chapter 3.A domain-spe
i�
 language provides a set of high-level operations that are
onve-nient for a spe
i�
 domain. If we formalize the syntax and semanti
s of a domain-spe
i�
language, then we
an use formal methods to prove that a program written in a domain-spe
i�
 language is
orre
t. That the implementation of the domain-spe
i�
 language is
orre
t is an orthogonal issue, related to low-level
ompiler veri�
ation, and ably handledby others.Towards this end, a
ollaborative e�ort with Dr. Panagiotis Manolios targets thefollowing:1. Proving that for any PLAWright
ode, the PLANALYZER's output is a legal PLA-PACK program with the same semanti
s as that of the input s
ript.2. Applying ta
ti
-based theorem proving to
onstru
t a system that utilizes both theinput and output of the integrated PLANALYZER system and, on a per instan
ebasis,
reates proofs of
orre
tness.6.4 Automated Analysis: plANALYZERPerforman
e is one of the paramount
on
erns in the area of linear algebra library
onstru
-tion. There are three interrelated fa
ets of this issue that need to be dealt with: modeling theenvironment, evaluating the performan
e estimates, and using the result of the evaluation.All three issues have been dealt with by the system des
ribed in this dissertation.It is rarely the
ase that the
ode that a
hieves optimal performan
e on one ar
hi-te
ture will perform as admirably on another. It is therefore a
ommon goal to have
odethat is performan
e portable a
ross various systems. The work presented here in
ludes theuse of a high-level language in
onjun
tion with analysis te
hnology. This fa
ilitates theprodu
tion of performan
e transportable
ode.
123

www.manaraa.com

6.5 An Integrated System: FLAME and PLANALYZERTo
onstru
t a linear algebra library one must design and implement the algorithms thatmust be available to the library user and make them as eÆ
ient as possible. FLAMEprovides a systemati
 means for deriving the variants of su
h algorithms. The PLAWright
ompiler allows for rapid prototyping. Automati
 generation of the
ode
orresponding tothe PLAWright s
ript is handled by the
ompiler (PLAN)
omponent of the PLANALYZER.Finally, the analyti
al (ANALYZER)
omponent of the system yields information regardingthe performan
e
hara
teristi
s of the produ
ed
ode, opening the door for hybridization.We have explored the development of all of the
on
epts and tools ne
essary for amethodi
al hybridization of a linear algebra library and believe that we have made a strong
ase for the soundness of the approa
h presented in this dissertation.

124

www.manaraa.com

Bibliography[1℄ R.C. Agarwal, F.G. Gustavson, and M. Zubair. Exploiting fun
tional parallelism ofPOWER2 to design high-performan
e numeri
al algorithms. IBM Journal of Resear
hand Development, 38(5), Sept. 1994.[2℄ Philip Alpatov, Greg Baker, Carter Edwards, John Gunnels, Greg Morrow, JamesOverfelt, Robert van de Geijn, and Yuan-Jye J. Wu. PLAPACK: Parallel linear algebrapa
kage { design overview. In Pro
eedings of SC97, 1997.[3℄ B. Alpern and L. Carter. Performan
e programming: A s
ien
e waiting to happen,1994.[4℄ Bjarne S. Andersen, Fred G. Gustavson, and Jerzy Wasniewski. A re
ursive formalationof Cholesky fa
torization of a matrix in pa
ked storage. LAPACK Working Note 146CS-00-441, University of Tennessee, Knoxville, May 2000.[5℄ E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-marling, A. E. M
Kenney, S. Ostrou
hov, and D. Sorensen. LAPACK Users' Guide.SIAM, Philadelphia, 1992.[6℄ E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrou
hov, B. Touran
heau,and R. van de Geijn. Basi
 Linear Algebra Communi
ation Subprograms. In Sixth Dis-tributed Memory Computing Conferen
e Pro
eedings, pages 287{290. IEEE ComputerSo
iety Press, 1991.[7℄ Greg Baker, John Gunnels, Greg Morrow, Beatri
e Riviere, and Robert van de Geijn.PLAPACK: High performan
e through high level abstra
tion. In Pro
eedings ofICCP98, 1998.[8℄ S. Balay, W. Gropp, L. M
Innes, and B. Smith. EÆ
ient management of parallelismin obje
t oriented numeri
al software libraries, 1997.[9℄ Satish Balay, William Gropp, Lois Curfman M
Innes, and Barry Smith. PETS
 2.0users manual. Te
hni
al Report ANL-95/11, Argonne National Laboratory, O
t. 1996.[10℄ R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,R. Pozo, C. Romine, , and H. van der Vorst. Templates for the Solution of LinearSystems: Building Blo
ks for Iterative Methods, 2nd Edition. SIAM, 1996.125

www.manaraa.com

[11℄ J. Bilmes, K. Asanovi
, C.W. Chin, and J. Demmel. Optimizing matrix multiply usingPHiPAC: a portable, high-performan
e, ANSI C
oding methodology. In Pro
eedingsof the International Conferen
e on Super
omputing. ACM SIGARC, July 1997.[12℄ Walter R. Bis
hofberger. Sni�: A pragmati
 approa
h to a
++ programming environ-ment. In C++ Conferen
e, pages 67{82, 1992.[13℄ L. S. Bla
kford, A. Cleary, J. Demmel, J. Dongarra, I. Dhillon, S. Hammarling, A. Pe-titet, H. Ren, K. Stanley, , and R. C. Whaley. Pra
ti
al experien
e in the dangers ofheterogeneous
omputing. ACM Trans. Math. Soft., to appear.[14℄ J. Choi, J. Dongarra, S. Ostrou
hov, A. Petitet, D. Walker, and R. C. Whaley. Aproposal for a set of parallel basi
 linear algebra subprograms. LAPACKWorking Note100 CS-95-292, University of Tennessee, May 1995.[15℄ J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. S
alapa
k: A s
alable linearalgebra library for distributed memory
on
urrent
omputers. In Pro
eedings of theFourth Symposium on the Frontiers of Massively Parallel Computation, pages 120{127.IEEE Comput. So
. Press, 1992.[16℄ Gene Cooperman. STAR/MPI: Binding a parallel library to intera
tive symboli
 al-gebra systems. In International Symposium on Symboli
 and Algebrai
 Computation,pages 126{132, 1995.[17℄ Bimillennium Corporation. Hiq referen
e manual, version 2.0, 1993.[18℄ P. D. Crout. A short method for evaluating determinants and solving systmes of linearequations with real or
omplex
oeÆ
ients. Trans AIEE, 60:1235{1240, 1941.[19℄ L. DeRose and D. Padua. A matlab to fortran 90 translator and its e�e
tiveness. InPro
eedings of the 10th ACM International Conferen
e on Super
omputing, 1996.[20℄ Luiz Antonio DeRose. Compiler Te
hniques for MATLAB Program. PhD thesis, Com-puter S
ien
es Department, The University of Illinios at Urbana{Champaign, 1996.[21℄ Edsger Wybe Dijkstra. Under the spell of Leibniz's dream. Te
h-ni
al Report EWD1298, The University of Texas at Austin, April 2000.http://www.
s.utexas.edu/users/EWD/.[22℄ J. J. Dongarra, J. R. Bun
h, C. B. Moler, and G. W. Stewart. LINPACK Users' Guide.SIAM, Philadelphia, 1979.[23℄ J. J. Dongarra, F. G. Gustavson, and A. Karp. Implementing linear algebra algorithmsfor dense matri
es on a ve
tor pipeline ma
hine. SIAM Review, 26(1):91{112, Jan.1984.[24℄ Ja
k Dongarra, Robert van de Geijn, and David Walker. S
alability issues a�e
ting thedesign of a dense linear algebra library. J. Parallel Distrib. Comput., 22(3), Sept. 1994.126

www.manaraa.com

[25℄ Ja
k J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Du�. A set of level 3basi
 linear algebra subprograms. ACM Trans. Math. Soft., 16(1):1{17, Mar
h 1990.[26℄ Ja
k J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Ri
hard J. Hanson. Anextended set of FORTRAN basi
 linear algebra subprograms. ACM Trans. Math.Soft., 14(1):1{17, Mar
h 1988.[27℄ Ja
k J. Dongarra, Iain S. Du�, Danny C. Sorensen, and Henk A. van der Vorst. SolvingLinear Systems on Ve
tor and Shared Memory Computers. SIAM, Philadelphia, PA,1991.[28℄ C. Edwards, P. Geng, A. Patra, and R. van de Geijn. Parallel matrix distributions:have we been doing it all wrong? Te
hni
al Report TR-95-40, Department of ComputerS
ien
es, The University of Texas at Austin, 1995.[29℄ E. Elmroth and F.G. Gustavson. Applying re
ursion to serial and parallel QR fa
tor-ization leads to better performan
e. IBM J. Res. Develop., 44(4):605{624, 2000.[30℄ Kathi Fisler, Shriram Krishnamurthi, and Don Batory. Verifying
omponent-based
ollaboration designs. In ICSE Workshop on Component-Based Software Engineering,page to appear, May 2001.[31℄ G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problemson Con
urrent Pro
essors, volume I. Prenti
e Hall, 1988.[32℄ K. A. Gallivan, R. J. Plemmons, and A. H. Sameh. Parallel algorithms for dense linearalgebra
omputations. SIAM Review, 32(1):54{135, 1990.[33℄ Gene Golub and James M. Ortega. S
ienti�
 Computing: an Introdu
tion with ParallelComputing. A
ademi
 Press, 1993.[34℄ Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns HopkinsUniversity Press, Baltimore, 2nd edition, 1989.[35℄ John W. Gray. Mastering Mathemati
a Programming Methods and Appli
ations. A
a-demi
 Press, 2nd edition, 1997.[36℄ David Gries and Fred B. S
hneider. A Logi
al Approa
h to Dis
rete Math. Texts andMonographs in Computer S
ien
e. Springer Verlag, 1992.[37℄ William Gropp. An introdu
tion to performan
e debugging for parallel
omputers.Te
hni
al report.[38℄ William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable ParallelProgramming with the Message-Passing Interfa
e. The MIT Press, 1996.[39℄ J. A. Gunnels, D. S. Katz, E. S. Quintana-Orti, , and R. A. van de Geijn. Fault-tolerant high-performan
e matrix multipli
ation: Theory and pra
ti
e. In InternationalConferen
e on Dependable Systems and Networks, 2001.127

www.manaraa.com

[40℄ John Gunnels, Calvin Lin, Greg Morrow, and Robert van de Geijn. A
exible
lass ofparallel matrix multipli
ation algorithms. In Pro
eedings of First Merged InternationalParallel Pro
essing Symposium and Symposium on Parallel and Distributed Pro
essing(1998 IPPS/SPDP '98), pages 110{116, 1998.[41℄ John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. Formal Linear AlgebraMethods Environment (FLAME): Overview. FLAME Working Note #1 CS-TR-00-28,Department of Computer S
ien
es, The University of Texas at Austin, Nov. 2000.[42℄ John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. A family of high-performan
e matrix multipli
ation algorithms. In Vassil N. Alexandrov, Ja
k J. Don-garra, Benjoe A. Juliano, Ren�e S. Renner, and C.J. Kenneth Tan, editors, Computa-tional S
ien
e - ICCS 2001, Part I, Le
ture Notes in Computer S
ien
e 2073, pages51{60. Springer-Verlag, 2001.[43℄ John A. Gunnels and Robert A. van de Geijn. Developing linear algebra al-gorithms: A
olle
tion of
lass proje
ts. Te
hni
al Report CS-TR-01-19, De-partment of Computer S
ien
es, The University of Texas at Austin, May 2001.http://www.
s.utexas.edu/users/flame/pubs.html.[44℄ John A. Gunnels and Robert A. van de Geijn. Formal methods for high-performan
elinear algebra libraries. In Ronald F. Boisvert and Ping Tak Peter Tang, editors, TheAr
hite
ture of S
ienti�
 Software, pages 193{210. Kluwer A
ademi
 Press, 2001.[45℄ Brian C. Gunter, Wesley C. Reiley, and Robert A. van de Geijn. Parallel out-of-
ore
holesky and qr fa
torizations with poo
lapa
k. In Pro
eedings of the 15th Interna-tional Parallel and Distributed Pro
essing Symposium (IPDPS). IEEE Computer So
i-ety, 2001.[46℄ F. Gustavson, A. Henriksson, I. Jonsson, B. K�agstr�om, and P. Ling. Re
ursive blo
keddata formats and BLAS's for dense linear algebra algorithms. In B. K�agstr�om et al.,editor, Applied Parallel Computing, Large S
ale S
ienti�
 and Industrial Problems,Le
ture Notes in Computer S
ien
e 1541, pages 195{206. Springer-Verlag, 1998.[47℄ F. Gustavson, A. Henriksson, I. Jonsson, B. K�agstr�om, and P. Ling. Supers
alarGEMM-based level 3 BLAS { the on-going evolution of a portable and high-performan
elibrary. In B. K�agstr�om et al., editor, Applied Parallel Computing, Large S
ale S
ien-ti�
 and Industrial Problems, Le
ture Notes in Computer S
ien
e 1541, pages 207{215.Springer-Verlag, 1998.[48℄ F. G. Gustavson. Re
ursion leads to automati
 variable blo
king for dense linear-algebraalgorithms. IBM Journal of Resear
h and Development, 41(6):737{755, November 1997.[49℄ F.G. Gustavson and I. Jonsson. Minimal storage high-performan
e Cholesky fa
tor-ization via blo
king and re
ursion. IBM J. Res. Develop., 44(6):823{850, November2000. 128

www.manaraa.com

[50℄ S. Guyer and C. Lin. Broadway: A software ar
hite
ture for s
ienti

omputing, 2000.[51℄ Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing softwarelibraries. In Domain-Spe
i�
 Languages, pages 39{52, 1999.[52℄ B. K�agstr�om, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High performan
emodel implementations and performan
e evaluation ben
hmark. TOMS, 24(3):268{302,1998.[53℄ V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introdu
tion to Parallel Computing:Design and Analysis of Algorithms. Benjaming-Cummings, 1994.[54℄ William Jalby Kyle A. Gallivan, Bret A. Marsolf and Ahmed H. Sameh. On thedevelopment of libraries and use in appli
ations. CSRD Report 1341, Center for Su-per
omputing Resear
h and Development, University of Illinois, May 1995.[55℄ C. L. Lawson, R. J. Hanson, D. R. Kin
aid, and F. T. Krogh. Basi
 linear algebrasubprograms for Fortran usage. ACM Trans. Math. Soft., 5(3):308{323, Sept. 1979.[56℄ J. Li, A. Skjellum, and R. D. Falgout. A poly-algorithm for parallel dense matrixmultipli
ation on two-dimensional pro
ess grid topologies. Con
urren
y: Pra
ti
e andExperien
e, 9(5):345{389, 1997.[57℄ Bret Andrew Marsolf. Te
hniques for the Intera
tive Development of Numeri
al LinearAlgebra Libraries for S
ienti�
 Computation. PhD thesis, Computer S
ien
es Depart-ment, University of Illinois at Urbana{Champaign, 1997.[58℄ C. Moler, J. Little, and S. Bangert. Pro-Matlab, User's Guide. The Mathworks, In
.,1987.[59℄ Greg Morrow and Robert van de Geijn. A parallel linear algebra server for matlab-likeenvironments. In Pro
eedings of SC98, to appear.[60℄ J. Nieplo
ha, R. J. Harrison, and R. J. Little�eld. Global arrays: A portable \shared-memory" programming model for distributed memory
omputers. pages 340{349, 1994.[61℄ Teren
e Parr. Referen
e guide: P

ts and
++.[62℄ Teren
e John Parr. An overview of SORCERER: A simple tree-parser generator. Te
h-ni
al report, 1994.[63℄ M. Quinn, A. Malishevsky, N. Seelam, and Y. Zhao. Perliminary results from a matlab
ompiler. In Pro
eedings of First Merged International Parallel Pro
essing Symposiumand Symposium on Parallel and Distributed Pro
essing (1998 IPPS/SPDP '98), pages81{87, 1998.[64℄ Enrique S. Quintana, Gregorio Quintana, Xiaobai Sun, and Robert van de Geijn. Gauss-jordan based matrix inversion and its parallelization. SJSC, submitted.129

www.manaraa.com

[65℄ Enrique S. Quintana-Ort�� and Robert van de Geijn. Fast parallel kernels for sele
tedproblems in
ontrol theory. In Ninth SIAM Conferen
e on Parallel Pro
essing forS
ienti�
 Computing, 1999.[66℄ Wesley C. Reiley. EÆ
ient parallel out-of-
ore implementation of the Cholesky fa
-torization. Te
hni
al Report CS-TR-99-33, Department of Computer S
ien
es, TheUniversity of Texas at Austin, De
. 1999. Undergraduate Honors Thesis.[67℄ Wesley C. Reiley and Robert A. van de Geijn. POOCLAPACK: Parallel Out-of-CoreLinear Algebra Pa
kage. Te
hni
al Report CS-TR-99-33, Department of ComputerS
ien
es, The University of Texas at Austin, Nov. 1999.[68℄ B. T. Smith et al. Matrix Eigensystem Routines { EISPACK Guide. Le
ture Notes inComputer S
ien
e 6. Springer-Verlag, New York, se
ond edition, 1976.[69℄ Mar
 Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Ja
k Don-garra. MPI: The Complete Referen
e. The MIT Press, 1996.[70℄ S. Stanley, Kendall. Exe
ution time of symmetri
 eigensolvers. Te
hni
al Report CSD-99-1039, 3, 1999.[71℄ G. W. Stewart. Matrix Algorithms Volume 1: Basi
 De
ompositions. SIAM, 1998.[72℄ Anne E. Trephethen, Vijay S. Menon, Chi-Chao Chang, Grezgorz J. Czajkowki, ChrisMyers, and Lloyd N. Trefethen. Multimatlab: Matlab on multiple pro
essors. Te
hni
alReport 96{239, Cornell Theory Center, 1996.[73℄ Robert van de Geijn and Jerrell Watts. SUMMA: S
alable universal matrix multipli-
ation algorithm. Con
urren
y: Pra
ti
e and Experien
e, to appear.[74℄ Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Pa
kage. The MITPress, 1997.[75℄ George Karypis Vipin Kumar and Ananth Grama. Role of message-passing in per-forman
e oriented parallel programming. In Pro
eedings of the Eighth SIAM ParallelPro
essing Conferen
e, 1997.[76℄ R. Clint Whaley and Ja
k J. Dongarra. Automati
ally tuned linear algebra software.In Pro
eedings of SC'98, 1998.[77℄ Stephen Wolfram. The Mathemati
a Book: 3rd Edition. Cambridge University Press,1996.
130

www.manaraa.com

VitaJohn A. Gunnels was born in Long Bea
h, California on May 15, 1965, the son of WillisAaron and Margaret Mary Gunnels. He attended Redmond High S
hool, Central Ore-gon Community College, Oregon State University, and The University of Illinois, Urbana-Champaign before moving to Austin where he met Jen Moore at UT Austin in 2001. He
urrently resides in Mt. Kis
o, NY with his dog, Data.Permanent Address: 85 Foxwood Cir
leMt. Kis
o, NY 10549

This dissertation was set by the author using the LATEX2" typesetting system.131

