A Systematic Approach to the Design and Analysis of

Linear Algebra Algorithms

by

John Andrew Gunnels, B.S., M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2001

www.manaraa.com

Abstract

Over the last two decades, much progress has been made in the area of the high-
performance sequential and parallel implementation of dense linear algebra operations. At
what time can we confidently state that we truly understand this problem area and what
form might evidence in support of this assertion take? It is our thesis that if we focus this
question on the software architecture of libraries for dense linear algebra operations, we can
claim to have reached the point where, for a restricted class of problems, we understand
this area. In this dissertation, we provide evidence in support of this assertion by outlining
a systematic and partially automated approach to the derivation and high-performance
implementation of a large class of dense linear algebra operations.

We have arrived at a conclusion that the answer is to apply formal derivation tech-
niques from Computing Science to the development of high-performance linear algebra li-
braries. The resulting approach has resulted in an aesthetically pleasing, coherent code that
facilitates performance analysis, intelligent modularity, and the enforcement of program cor-
rectness via assertions. In this dissertation, we illustrate this observation by looking at the
development of the Formal Linear Algebra Methods Environment (FLAME) for implement-
ing linear algebra algorithms.

We believe that traditional methods of implementation do not reflect the natural
manner in which an algorithm is either classified or derived. To remedy this discrepancy,
we propose the use of a small set of abstractions that can be used to design and implement
linear algebra algorithms in a simple and straightforward manner. These abstractions may
be expressed in a script language that can be compiled into efficient executable code. We
extend this approach to parallel implementations without adding substantial complexity.

It should also be possible to translate these scripts into analytical equations that
reflect their performance profiles. These profiles may allow software designers to systemat-
ically optimize their algorithms for a given machine or to meet a particular resource goal.
Given the more systematic approach to deriving and implementing algorithms that is facili-
tated by better abstraction and classification techniques, this sort of analysis can be shown
to be systematically derivable and automated.

www.manaraa.com

Contents

Chapter 1 Introduction 1
1.1 Motivation e 2
1.2 Our Approach e 3

1.2.1 Recent Insights 3
1.2.2 A Solution: The Big Picture 4
1.3 Research Contributions 7
1.3.1 Systematizing Development 7
1.3.2 Domain-Specific Languages 7
1.3.3 Automated Code and Analysis Generation 8
1.4 Related Work: Integrated Systems 8
1.4.1 MultiMATLAB 8
1.4.2 PST 9
1.4.3 FALCON e 9
144 Broadway e 9
1.5 Overview of Dissertation 10
1.5.1 Design: FLAME (Chapter 2) 10
1.5.2 A Domain-Specific Language: PLAWright (Chapter 3) 10
1.5.3 Code Generation (Chapter 4) 11
1.5.4 Performance (Chapter 5) 11
1.5.5 Conclusion (Chapter 6) 11

Chapter 2 Systematic Derivation of Variants 12
2.1 Introduction 12
2.2 OVErvIEW e 13
2.3 Background 13

2.3.1 The Correctness of Loops 15
2.4 A Case Study: LU Factorization 16
24.1 A classical derivation oL L 17
2.4.2 But what is the loop-invariant? 0oL 18
243 Lazyalgorithm 21
244 Row-lazy algorithm 26

1

www.manaraa.com

2.4.5 Column-lazy algorithm 26

24.6 Row-column-lazy algorithm 28
2.4.7 Eager algorithm o 28

2.5 A Recipe for Deriving Algorithms 29
2.6 Encoding the Algorithm in C 30
2.6.1 Classic implementation with the BLAS 30
2.6.2 The algorithm ésthecode 30
2.6.3 Positive features of the FLAME approach 34
2.6.4 But what about Fortran? 35
2.6.5 Proving the implementation correct, 35

2.7 LU Factorization with Partial Pivoting 36
2.7.1 Notation. 36
2.7.2 Derivation of the invariants 0oL 37
2.7.3 Derivation of the eager algorithm 38
2.7.4 TImplementation 41

2.8 Experiments. e 42
2.8.1 Productivity experiment Lo 42
2.8.2 Accessibility experimento 43
2.8.3 Performance experimento 43

2.9 Related Work o 45
2.10 Chapter Summary o vt 46
Chapter 3 From Variant to Multiple Versions 48
3.1 Motivation 48
3.1.1 Coding Matrix Algorithms: The Sequential World 48
3.1.2 Coding Matrix Algorithms: Extending to Parallel 49
3.1.3 Proposed Solution 50
3.1.4 Where PLAWright FitsIn 54

3.2 Issues 54
3.2.1 Abstraction 55
3.2.2 A Domain-Specific Language for Linear Algebra 60
3.2.3 Parallel Specializations and Extensions 64

3.3 Related Work o 68
3.3.1 Library-Based Abstractions 68
3.3.2 Programming Environments 69

3.4 Chapter Summary 69
Chapter 4 Automated Code Generation 70
4.1 Motivation for Automating Library Linkage 71
4.2 TIssues in Library Linkage 72
4.2.1 A (Fictitious) Linking Library 72
4.2.2 Reducing a Script 76
4.2.3 Annotating a Library 7

2

Ol LAC U Zyl_ﬂbl

www.manaraa.com

4.2.4 Producing Output 7

4.3 Implementation: An Automated Library 7
4.3.1 Tools Employed. 78
4.3.2 PLAPACK: A Target Library 78
4.3.3 Compiling PLAWright 79
4.3.4 Annotating the Library: Functionality Provided 80
4.3.5 Producing Output 82
4.3.6 A Realized Construction 82
4.3.7 Libraries. 84
4.3.8 Library Binding oo 85

4.4 Experimental Results. o 85
4.4.1 Generating Parallel LU Factorization 85

4.5 Chapter Summary 91

Chapter 5 Automatic Analysis of an Implementation 92

5.1 Motivation 92

9.2 Issueso 96
5.2.1 Why Performance Is Important 96
5.2.2 Why Performance Analysis Is Important 96
5.2.3 Convenience vs. Performance 98
5.2.4 Traditional Approaches 99
5.2.5 Problems with Traditional Approaches 99
52.6 A New Approach 99
5.2.7 Coupling Code and Performance 100

5.3 Contributions of the Systematic Underpinnings 103
5.3.1 Modularity of the Analytic Harness 104

5.4 TImplementation: Automated Analysis 106
5.4.1 An Analysis-Ready Script o oo 106
5.4.2 Explanation of Script Extensions and Line-Cost Estimates 106
5.4.3 Analytical Result 108
5.4.4 The Use of Mathematica Module([ls 109
5.4.5 Performance Estimates: Discrete Formulae 109
5.4.6 Closed-Form Expressions 110
5.4.7 More Practical Concerns 110
548 Load Balanceo 111

5.5 Related Work 112
5.5.1 Monolithic Analysis 112
5.5.2 Ad-hoc/Component Sums Based Analysis 112

5.6 Experimental Results. o 113
5.6.1 Automated Analysis Generation 113
5.6.2 Analysis vs. Witnessed Performance 113
5.6.3 Experiments: A Summary oo 117

3

Ol LAC U Zyl_ﬂbl

www.manaraa.com

5.7 Chapter Summary 120

Chapter 6 Conclusion 121
6.1 Design: FLAME 121
6.2 Language: PLAWright 122
6.3 Automated Code Generation: PLANalyzer 123
6.4 Automated Analysis: plANALYZER 123
6.5 An Integrated System: FLAME and PLANALYZER 124

Bibliography 125

Vita 131

4

www.manaraa.com

Chapter 1

Introduction

Our claim is that it is possible to create a system wherein one can code dense linear algebra
routines in a very high-level, domain-specific language and still attain near-peak perfor-
mance on distributed-memory parallel architectures. This dissertation provides evidence
supporting this claim and describes the implications of such a system. Our thesis can be
expressed as follows:

e We have discovered how to systematically derive a restricted class of linear algebra
algorithms using formal derivation techniques.

e For this class of algorithms, compiler tools can be employed to reduce a domain-specific
program to a list of operational requirements.

e In this domain, requirements can be paired to the functionality provided by a set of
library routines if the annotations used to express those services are compatible with
the requirements.

e For this class of algorithms, performance estimates of constructed routines can be
made highly accurate if the underlying library is layered correctly and the language
used to describe performance characteristics is suitably flexible.

The domain under study in this dissertation is restricted to a subset of dense linear
algebra problems. This class includes the level-3 BLAS routines [25, 39], matrix factorization
routines [44], and kernels involved in control theory [65, 64]. While this set of algorithms
does not cover the gamut of dense linear algebra, it does comprise a useful, core set.

This chapter begins with an historical overview that summarizes the evolution of
linear algebra software libraries. This is followed by a brief treatment of the insights that led
us to the work presented here. We then explain how this work advances the state-of-the-art.
After itemizing the contributions of our research, we present a summary of other research
efforts whose goals are similar to our own. The final section of this chapter presents an

outline of the dissertation.

www.manaraa.com

1.1 Motivation

Advances in software engineering for scientific applications have often been led by tech-
niques developed for libraries for dense linear algebra operations. The first such package
to achieve widespread use and to embody new techniques in software engineering was EIS-
PACK [68]. The mid-1970s witnessed the introduction of the Basic Linear Algebra Subpro-
grams (BLAS) [55]. This version of the BLAS was a set of vector operations (now known as
level-1 BLAS) that allowed libraries to attain high performance on computers possessing a
flat memory while remaining portable between platforms. This library and its well-defined
interface simultaneously enhanced code modularity and readability. The first successful
library to exploit these BLAS was LINPACK [22].

By the late 1980s, it was recognized that in order to overcome the gap between pro-
cessor and memory performance on modern microprocessors it was necessary to reformulate
matrix operations in terms of level-2 (matrix-vector multiplication) and level-3 (matrix-
matrix multiplication-like) BLAS operations [26, 25]. First released in the early 1990s,
LAPACK [5] is a high-performance package for linear algebra operations. LAPACK is a
portable library that provides a functionality that is a superset of both LINPACK and EIS-
PACK. The LAPACK library heavily utilizes the level-3 BLAS and evinces high performance
on essentially all sequential and shared-memory architectures.

A major simplification in the implementation of the level-3 BLAS stemmed from
the observation that they can be cast in terms of optimized matrix-matrix multiplication [1,
47, 52]. The performance of the resulting libraries was comparable to that of the optimized,
assembly-coded, vendor-supplied BLAS in many cases. Further, the implementations were
more portable than previous BLAS libraries because they were written in Fortran. In those
cases where the code was not performance transportable (i.e. where these BLAS did not
compile into efficient assembly code), the ideas behind this research simplified the task of
hand-coding the level-3 BLAS library.

With the advent of distributed-memory parallel architectures, LAPACK was no
longer sufficient for the needs of high-performance scientific computing. LAPACK worked
well with high-performance shared-memory systems, but was not written to be compatible
with distributed-memory architectures. Distributed-memory architectures depend upon the
applications and libraries to explicitly manage the physically distinct memories attached to
the computational processors (nodes) of the system. Thus, a parallel version of LAPACK,
ScaLAPACK [15], was developed. A major design goal of the ScaLAPACK project was to
preserve and re-use as much code from LAPACK as possible. Thus, all layers in the Scal.A-
PACK software architecture were designed to resemble analogous layers in the LAPACK
software architecture. This decision was motivated by the fact that LAPACK had proven
itself both robust and efficient. However, this decision complicated the implementation of
ScaLAPACK. The introduction of data distribution across memories created a complica-
tion analogous to that of creating and maintaining the data structures required for storing
sparse matrices. The mapping from indices to matrix element(s) was no longer a simple
one. Combining this complication with the monolithic structure of the software led to code

www.manaraa.com

that was laborious to construct and difficult to maintain.

Recently, a number of projects have developed software for generating automati-
cally tuned matrix-matrix multiplication kernels. These undertakings include the PHiPAC
project [11] and the ATLAS project [76].

The PHiPAC research effort included a careful analysis of C implementations of
matrix-matrix multiplication. By structuring the loops and memory references carefully,
it is possible for a C compiler to generate highly efficient code for this algorithm. The
PHIPAC research team produced a software system capable of generating efficient BLAS
kernels through a generate-and-test strategy. This software generator created implemen-
tations of matrix multiplication algorithms that blocked matrices in every reasonable way.
By executing these programs and monitoring the resulting performance, parameters for a
high-performance matrix multiplication implementation could be determined.

The ATLAS project repackaged and simplified the methods developed in creating
the PHiPAC system. In addition, the ATLAS system required less time to generate efficient
linear algebra kernels. This efficiency was gained by avoiding PHiPAC’s exhaustive search of
the parameter space involved in determining optimal matrix blocking sizes. Unfortunately,
as this search space was reduced through experience, not by a theoretical model, it is
sometimes the case that ATLAS produces code with far less than optimal performance
characteristics [42].

1.2 Ouwur Approach

1.2.1 Recent Insights

The primary inspiration for much of the work presented in this dissertation came from our
experience with the Parallel Linear Algebra Package (PLAPACK) [74]. PLAPACK achieves
a functionality similar to that of ScaLAPACK, targeting the same distributed-memory ar-
chitectures. In contrast to ScaLAPACK, PLAPACK uses an MPI-like [38] approach to hide
indexing and data distribution details.

Work related to PLAPACK provided insights that motivated the approach presented
in Chapter 2 and Chapter 3 of this document. Raising the level of abstraction at which one
codes reduces the effort involved in implementing high-performance linear algebra library
routines.

As we gained more experience with PLAPACK, a number of themes kept reappear-
ing:

e The derivation of algorithms for different linear algebra operations was systematic.

e Similarly, the analysis of the resulting algorithms was systematic, although tedious
and error-prone.

e For a given linear algebra operation, different algorithms provided better performance
as the sizes of operands (matrices) changed [40]. This makes analysis necessary in order
to be able to determine when and understand why different algorithms are superior.

www.manaraa.com

We discovered that, in deriving algorithms for a new operation, we were applying formal
derivation methods to the domain of algorithms for dense linear algebra operations. This
led to our work on the Formal Linear Algebra Methods Environment (FLAME), research
detailed in Chapter 2.

Linear algebra libraries are expected to contain routines that can deal with a broad
range of operational tasks and to be written in a form that can be ported between different
computational environments. The LAPACK library achieves both objectives by exploiting
the BLAS. However, the use of libraries such as LAPACK has the disadvantages of requiring
the applications programmer to perform time-consuming, involved, source code optimiza-
tions that are often not performance portable [50]. The work presented in Chapter 3 and
Chapter 4 addresses this problem. By creating a language that allows the user to program
at a level of abstraction higher than that of PLAPACK, little library knowledge is required
of the programmer. An automated code generation system accepts programs written in
this language and produces code that evinces superior performance on distributed-memory,
parallel supercomputers. This is achieved by mechanically linking the high-level programs
to a functionally-annotated version of the PLAPACK library.

A simple model of a distributed-memory parallel system is used for performance
analysis in Chapter 5. This model reflects lessons learned while studying the issues related
to the creation of high-performance matrix-matrix multiplication kernels for single processor
machines with hierarchical memories [42]. This contrasts with code generation efforts such
as PHiPAC and ATLAS, which employ brute force to search a parameter space for blocking
sizes that accommodate multiple levels of memory hierarchy.

Together, these experiences and insights led us to conclude that for a subset of dense
linear algebra operations, the derivation, implementation, and analysis of parallel algorithms
is now a well-understood and systematic process.

1.2.2 A Solution: The Big Picture

The goal of linear algebra code production is to generate efficient code from a clear state-
ment of mathematical requirements. Our strategy for achieving this objective is depicted
in Figure 1.1. Specifically, it is our aim to replace the “Human Expert” of Figure 1.2,
which reflects where previous research had led us, with systematic techniques and auto-
mated tools. The term “efficient” covers a number of sub-goals including reliability, speed,
and transportability. These qualities are widely considered the primary value metrics of
such computer codes. This dissertation targets the community of scientific library writers.
Since one might safely suppose that these researchers are mathematicians or have strong
mathematical backgrounds, the clear statement of mathematical requirements is a logical
starting point. The mathematical specification of the problem must be known in order to
generate code to solve that problem. In order to automate a system, this specification,
represented by “A = LU” in Figure 1.1, must be made explicit.

The unified approach to the design and development of dense linear algebra algo-
rithms that is presented in this document should be distinguished from the situation wherein
development is ad hoc. When the development and tool sets are collected, not designed as

www.manaraa.com

_ Development
Variants Methodology

(|

LCGmpaserJ l

h 4

L 4 E——r Y
reript Version 0 Feript Version 1 2 Beript Version n
‘-F"'-'_FFF'_\\\ = ==
[Cu:umpi]er] [Anﬂl}rzer} [Cu:umpiler] [Hnal;rzer] [Compﬂsr] [An;a.lgrzer]
¥ L 4 4

i &
Code 0 npl = Code 1 (npl = Code n npl = 5

| Hybridizer |

fficient Codd

Figure 1.1: The Big Picture: As advanced in this dissertation

part of a holistic approach, they may supply as much baggage as leverage to a problem-
solving environment.

Development Methodology

Given a mathematical specification of the problem, it is beneficial to have a consistent,
methodological approach that enables one to construct an algorithm that satisfies this spec-
ification. If the approach is broadly applicable, it can be employed in the creation of the
entire range of routines for a linear algebra library. If this methodology is systematic, it may
be automated. In this dissertation, we present one such approach. FLAME is systematic in
nature. In addition, FLAME can be utilized to generate a number of different algorithms,
called variants, for the same mathematical problem specification.

Library Management: A Composer

One may create a number of variants corresponding to the same mathematical specification.
In order to automate code generation, is useful to link together components that satisfy the
same mathematical specification. In the work presented here, they are linked through anno-
tations that expose the similarities in their functionality. This is the task of the “Composer.”

www.manaraa.com

The Big Picture

A=DU

Human Expert

Y —y 4

]Script Version n‘

|Script Wersion D| |Script Wersion 1|

i s i

[Code0 | fIrgmm=7)) [Codel ||Irinm = [Coten] [Lmn-1

uman Expe

(Efficient Codd|

Figure 1.2: The Big Picture: As our research group has viewed it.

Input to the Composer is written in a high-level script language called PLAWright!. Scripts
contain both an algorithmic component and the mathematical specification satisfied by that
script. By annotating the scripts in this manner, the system can interchangeably use those
scripts with the same functional characteristics.

It is a widely held belief that any automated system should allow for expert in-
tervention. PLAWright, the language of the Composer, allows for hands-on modifications.
These specializations take the form of such things as data distribution directives (in the
context of parallel architectures), functional overrides (forcing the use a specific library call
or code segment), and performance annotations (indicating the computational complexity
of a component). In this dissertation, these specialized forms of a given variant are referred
to as script versions. There is a single “vanilla,” or plain, script corresponding to a variant
constructed via FLAME, but there may be many specialized versions of that variant.

Code Generation and Analysis

Since the goal of the process under consideration involves the production of efficient code,
we couple the code produced to an analysis procedure. By restricting our attention to the
construction of code built on top of an existing library, the creation of such an analytical

'We would like to thank Sam Guyer for both the PLAWright name and a prototypical example of the
language.

www.manaraa.com

engine becomes a more precisely defined task.

Given a single script and a software library, there may be many ways to fulfill the
requirements of the script with the services provided by the component library routines.
It is often the case that different code instantiations exhibit different computational char-
acteristics. It is also often true that no one routine is best for all situations. Differing
operand dimensionalities and characteristics may make it necessary to dynamically select
from many different routines in order to attain consistently near-optimal performance. This
is called code hybridization. It makes sense to couple code generation and analysis in order
to enable the production of hybridized code that is efficient across a wide range of problem
instances. This dissertation work presents the PLANALYZER, a coupled code-production
and code-analysis system.

The proof-of-concept implementation described in this dissertation limits the algo-
rithmic area to a subset of dense linear algebra, the complexity measures to time, and the
output language to C. However, this system can be extended to involve other complexity
measures (such as memory usage) or to target other languages (such as Fortran).

1.3 Research Contributions

1.3.1 Systematizing Development

We have made systematic the derivation of a class of linear algebra algorithms through the
use of simple formal derivation techniques. This advances the state-of-the-art by bringing
formal derivation techniques to an area of software architecture that has made little use of
them in the past. Our methodology is referred to as FLAME. Further, we have created a
regimented structure for the expression of FLAME algorithms. This structure makes explicit
the similarities and differences between closely related algorithmic variants. We have coupled
this with the Formal Linear Algebra Methods Building Environment (FLAMBE)?, which
allows one to encode the routines in a form that mirrors the resultant FLAME algorithms.

FLAMBE code can handle matrix computations on both serial and parallel ma-
chines, with porting requiring only minor modifications. Thus, our work eases efforts re-
quired to construct a library that contains routines that share functionality, but address
different levels of the memory hierarchy. This category of vertically integrated library is
useful in high-performance, distributed-memory parallel computing.

1.3.2 Domain-Specific Languages

We have refined a domain specific language, called PLAWright, for the expression of dense
linear algebra subroutines. We have also verified that algorithms expressed in this language
can be compiled into code that executes on a parallel machine and into analytical code that
reflects the complexity of the corresponding executable. Additionally, we have created a
framework within which implicit assumptions regarding linear algebra algorithms are made

2This library has been referred to as FLAME in other documentation [41, 44].

www.manaraa.com

explicit. Through PLAWright, we have created a language that allows for rapid prototyping
and optimization, improving upon languages such as PLAPACK and MATLAB by raising
the level of abstraction without sacrificing performance.

1.3.3 Automated Code and Analysis Generation

We have constructed an analytical model for homogeneous parallel computers that is simple,
precise enough to meet our requirements, and applicable to modern microprocessors com-
monly used in the area of high-performance scientific computation. This modeling effort
provided us with many insights into the design of a performance modeling language.

Our system allows an individual, who either lacks expert knowledge regarding the
target architecture or the underlying libraries, to produce routines with admirable perfor-
mance characteristics. The system we have created accomplishes this by utilizing expert
knowledge, in the form of functional annotations, to construct a number of comparable
programs from a single input script. In addition, this system is capable of analyzing the
performance characteristics of these implementations in order to facilitate the selection of the
best code available from the produced alternatives. Utilizing an analytical model represents
an approach orthogonal to that of code generators such as PHiPAC and ATLAS.

1.4 Related Work: Integrated Systems

Below is a discussion of work related to “integrated systems” with goals similar to those
addressed by the work in this dissertation. In subsequent chapters, the “Related Work”
sections include research efforts that address the more narrow topic of that chapter.

1.4.1 MultiMATLAB

The MultiMATLAB project attempted to take advantage of a large existing code base and
an integrated development environment [72]. The philosophy of the project was analogous
to that underlying the ScaLAPACK project [15]. MultiMATLAB can utilize a number of
MATLAB processes running on a set of processors. When coupled with a communications
library, this enabled a parallel scripting environment. In this environment, a programmer
can execute a script on the master processor and utilize the computational power of all of
the processors in the system.

In contrast to MultiMATLAB, the system presented in this dissertation addresses
the entire development process, from algorithmic development to code generation and anal-
ysis. Further, using our system results in code that exhibits admirable performance charac-
teristics when executed on a distributed-memory, parallel supercomputer.

www.manaraa.com

1.4.2 PSI

The PLAPACK-Server Interface (PSI) project [59] used an approach similar to that of
MultiMATLAB3. Built on the PLAPACK library, the PSI package allows one to run scripts,
written in MATLAB [58], Mathematica [77], or HiQ [17], on the master processor. These
scripts can use the PLAPACK library to handle the requisite parallel computations while
the system retains the ability to utilize the indicated computational environment in the case

that:
e PLAPACK does not supply the desired functionality and
e The problem can fit on a single node.

Both MultiMATLAB and PSI allow the user to take advantage of the built-in graph-
ics capabilities of the indicated commercial systems. The difference being that PSI can use
the graphics capabilities of a single node while MultiMATLAB has the ability to utilize
these graphics capabilities on all participating processors.

In contrast to PSI, our system allows the user to program at a level of abstraction
that lies above that of the PLAPACK library. Further, unlike PSI, the research presented
in this document includes algorithmic development and performance analysis.

1.4.3 FALCON

In sharp contrast to MultiMATLAB, the FALCON project [20, 57, 19] resulted in a sys-
tem capable of compiling MATLAB code into an efficient parallel executable. It might
appear that a large part of the work underlying the FALCON system was made obsolete by
the compiler now available from the company that created MATLAB, The MathWorks™™.
However, this may not be the case. Parallel performance results are easy to get for the
FALCON system while comparable figures for MultiMATLAB [63] are difficult to locate.
However, it may be that the MultiMATLAB project is far more interested in flexibility than
efficiency.

Unlike the FALCON project, our work addresses algorithmic development and, thus,
presents an end-to-end development methodology.

1.4.4 Broadway

The Broadway Project at UT Austin is an effort to automatically optimize both software li-
braries and the applications that utilize them [51, 50]. This two-pronged approach is slightly
different from the work presented in this dissertation. Broadway is primarily aimed at im-
proving upon existing routines whereas the research thrust of this dissertation drops back to
the creation of the algorithms and the use of a new language. Further, Broadway can be ap-
plied to libraries that do not involve scientific computation, whereas the PLANALYZER (see
Chapters 3-5) is tied to that domain. Finally, our research takes a quantitative approach

3 A tactic first utilized by STAR/MPI [16].

www.manaraa.com

to the analysis and optimization of algorithms while Broadway’s approach is qualitative in
nature, as befits a more wide-ranging tool.

1.5 Overview of Dissertation

This overview is intended to serve to remind the reader of the components under study in
this dissertation research. Each component builds upon the last, but no successor in the
development process is entirely dependent upon its predecessor. The result is a system that
has a “best of both worlds” flavor; the tools facilitate, but are not responsible for enabling,
the next step in the process of development. The design methodology (FLAME) provides the
underlying structure and philosophy for the rest of the system. The employment of FLAME
results in algorithms of a specific structure. The next step in the process is the Composer,
which utilizes the PLAWright language. The Composer accepts algorithms evincing this
structure as input and may be used to specialize them before library linkage is performed.
At that point, the PLANALYZER system is used to generate code and coupled analysis
formulae through the use of an annotated library. Finally, the results of the PLANALYZER
system can be used to create hybridized code.

1.5.1 Design: FLAME (Chapter 2)

The Formal Linear Algebra Methods Environment is a methodology that facilitates the
systematic and formal derivation of dense linear algebra algorithms.

The FLAME methodology is built upon the use of loop invariants, a fundamental
technique of computer science. While it is no surprise that this sort of methodology results
in provably correct algorithms, the technique also allows for the creation of novel algorithms.
There are many other benefits to this approach, and those are detailed in Chapter 2.

The systematic nature by which algorithms are derived with the FLAME philosophy
is a strong indicator that this derivation process can be automated. Although such automa-
tion is not a part of the research presented in this dissertation, some evidence is offered in
support of the assertion that FLAME can be partially mechanized. Mechanization of this
step would result in an end-to-end, mechanized system for the creation of linear algebra
libraries.

1.5.2 A Domain-Specific Language: PLAWright (Chapter 3)

Intimately tied to the derivation of the algorithms is the language in which one expresses
the resulting artifact. An effort was made to allow the language of the algorithms to be
virtually identical to the language of their implementation. FLAMBE is a step towards this
goal, but it is not the final step, as Chapter 3, which introduces the PLAWright language,
demonstrates.

10

www.manaraa.com

1.5.3 Code Generation (Chapter 4)

In this text, the term “code generation” may be considered roughly synonymous with func-
tional composition. Here, the central issue is linking to a library providing functional self-
description via annotations. The approach used to mechanize linkage allows the different
levels of the underlying library to be dealt with in a uniform manner.

The other desirable properties of an automated system, such as flexible library
coupling, production code that reflects specializations in the high-level language, and high-
performance codes based on little user direction, are also evident in the system examined in
this document. Chapter 4 is concerned with functional linkage issues while Chapters 4 and
5 combine to deal with the automated production of high-performance code.

1.5.4 Performance (Chapter 5)

In the area of scientific computation, where linear algebra is a cornerstone, efficiency is
crucial. In this chapter, we consider the issue of performance as it relates to algorithmic
implementation. There are other interpretations of “performance” such as code creation
time and the optimal use of the time and talent of human experts, but those are addressed
elsewhere. The typical axes of quality in this field are the execution time and space required
by executing routines.

Chapter 5 studies the issues pertinent to such concerns: modeling, evaluation, hybrid
algorithms, and the performance annotations that enable the automation of this process.

1.5.5 Conclusion (Chapter 6)

Finally, a summary of the work and its contributions to the area of linear algebra library
development is presented. Possible directions for further study and future work are also
briefly discussed.

11

Ol LAC U Zyl_ﬂbl

www.manaraa.com

Chapter 2

Systematic Derivation of
Variants

Since the advent of high performance, distributed-memory parallel computing, the need for
intelligible code has become ever greater. The development and maintenance of libraries
for these architectures is simply too complex to be amenable to conventional approaches to
implementation. Attempts to employ traditional methodology have led, in our opinion, to
the production of an abundance of anfractuous code that is difficult to maintain and nigh
impossible to upgrade.

Having struggled with these issues for more than a decade, we have concluded that
the solution is to apply a technique from theoretical computer science, formal derivation, to
the development of high-performance linear algebra libraries. We think that the resulting
approach results in aesthetically pleasing, coherent code that facilitates intelligent modular-
ity and high performance while enhancing confidence in its correctness. Since the technique
is language independent, it lends itself equally well to a wide spectrum of programming lan-
guages (and paradigms) ranging from C and Fortran to C++ and Java. In this chapter, we
illustrate our observations by looking at FLAME, a framework that facilitates the derivation
and implementation of linear algebra algorithms.

2.1 Introduction

When considering the unmanageable complexity of computer systems, Dijkstra recently
made the following observations [21]:

(i) When exhaustive testing is impossible —i.e., almost always— our trust can only be based
on proof (be it mechanized or not).

(ii) A program for which it is not clear why we should trust it, is of dubious value.

12

www.manaraa.com

(iii) A program should be structured in such a way that the argument for its correctness
is feasible and not unnecessarily laborious.

(iv) Given the proof, deriving a program justified by it, is much easier than, given the
program, constructing a proof justifying it.

In this chapter, we make a number of contributions to the development linear algebra
libraries. These contributions relate to the above observations as follows:

e By borrowing from Dijkstra’s own contributions to computing science, we show how
to systematically derive families of algorithms for a given matrix operation.

e The derivation leads to a structured statement of the algorithms that mirrors how the
algorithms are often explained in a classroom setting.

e The derivation of the algorithms provides a proof of the correctness of the algorithms.

e By implementing the algorithms so that the code mirrors the algorithms that is the
end-product of this derivation process, opportunities for the introduction of error are
reduced. As a result, the proof of the correctness of the algorithm allows us to assert
the correctness of the code.

While the resulting infrastructure, FLAME, allowed us to quickly and reliably implement
components of a high-performance linear algebra library, it can equally well benefit library
users who need to customize a given routine or to extend the functionality of their own
library.

2.2 Overview

In Section 2.3.1 we review some basic insights from formal derivation theory. Next, in Sec-
tion 2.4 we apply these insights to an illustrative example, LU factorization without pivoting,
in order to develop a family of algorithms for a single, given operation. This is followed
by Section 2.5, in which we summarize our systematic process for deriving linear algebra
algorithms. Then, in Section 2.6 we show how library extensions added to the C program-
ming language, together with careful formatting, allows one to write code that reflects the
algorithm. The fact that the techniques can be applied to a more difficult operation like LU
factorization with partial pivoting is then demonstrated in Section 2.7. Performance is of
concern in this area and in Section 2.8 we demonstrate that high performance is not com-
promised by raising the level of abstraction at which one codes. Finally, future directions
and conclusions are given cursory treatment in Section 2.10 and a more in-depth look in
Section 6.1.

2.3 Background

Some would immediately draw the conclusion that a change to a more modern programming
language like C++ is at least highly desirable, if not a necessary precursor to writing elegant

13

www.manaraa.com

code. The fact is that most applications that call linear algebra packages are still written in
Fortran and/or C. Interfacing such an application with a library written in C++ presents
certain complications. However, during the mid-1990s, the Message-Passing Interface (MPI)
introduced to the scientific computing community a programming model, object-based pro-
gramming, that possesses many of the advantages typically associated with the intelligent
use of an object-oriented language [69]. Using objects (e.g. communicators in MPI) to
encapsulate data structures and hide complexity, a much cleaner approach can be achieved.

Our own work on PLAPACK borrowed from this approach in order to hide details
of data distribution and data mapping in the realm of parallel linear algebra libraries. The
primary concept, also germane to the work presented here, is that PLAPACK raises the
level of abstraction at which one programs so that indexing is essentially removed from the
code, allowing the routine to reflect the algorithm as it is naturally presented in a classroom
setting. Since our initial work on PLAPACK, we have experimented with similar interfaces
in such contexts as (parallel) out-of-core linear algebra packages [45, 67] and a low-level
implementation of the sequential Basic Linear Algebra Subprograms (BLAS) [42, 44].

One strong motivation for systematically deriving algorithms and reducing the com-
plexity of translating these algorithms to code comes from the fact that, for a given opera-
tion, a different algorithm may provide higher performance depending on the architecture
and/or the problem dimensions. Some of our previous research [42] demonstrated that
the efficient, transportable implementation of matrix-matrix multiplication on a sequential
architecture with a hierarchical memory requires a hierarchy of matrix algorithms whose
organization mirrors that of the memory system under consideration. Perhaps surprisingly,
this is necessary even when the problem size is fixed. In the same paper, we describe a
methodology for composing these routines. In this way, minimal coding effort is required
to attain superior performance across a wide spectrum of algorithms, architectures, and
problem sizes.

Analogously, previous work demonstrated that an efficient implementation of par-
allel matrix multiplication requires both multiple algorithms and a method for selecting an
appropriate algorithm for the presented case if one is to handle operands of various sizes
and shapes [40]. We have come to a similar conclusion in the context of out-of-core factor-
ization algorithms and their implementation using the Parallel Out-of-Core Linear Algebra
PACKage (POOCLAPACK) [45, 66]. To summarize our experiences: as high-performance
architectures incorporate cache, local, shared, and distributed memories all within one sys-
tem, multiple algorithms for a single operation become necessary for optimal performance.
Traditional approaches make the implementation of libraries that span all possibilities nigh
impossible.

FLAME is the next step in the evolution of these systems. We consider FLAME to
be an environment in the sense that it encourages the developer to systematically construct
a family of algorithms for a given matrix operation. Ideally, the steps that lead to the algo-
rithms are carefully documented, providing the proof that the algorithms are correct. Only
after its correctness can be asserted should the algorithm be translated to code. Since the
code mirrors the algorithm, its correctness can be asserted as well, and minimal debugging

14

www.manaraa.com

and testing is necessary. Once the code delivers the correct results, functionality can be
extended and/or performance optimizations can be incorporated. We illustrate FLAME
in the simplest setting, for sequential algorithms. Minor modifications to PLAPACK and
POOCLAPACK allow the porting to distributed-memory architectures and/or out-of-core
computations with essentially no change to the code. The extent of this similarity can be
seen by comparing Figure 2.3(a) and Figure 3.7

2.3.1 The Correctness of Loops

In a standard text by Gries and Schneider used to teach discrete mathematics to under-
graduates in computer science we find the following material ([36], pages 236-237):

We prefer to write a while loop using the syntax
do B— S od

where Boolean expression B is called the guard and statement S is called the
repetend.

[The Joop is executed as follows: If B is false, then execution of the loop termi-
nates; otherwise S is executed and the process is repeated.

Each execution of repetend S is called an iteration. Thus, if B is initially false,
then 0 iterations occur.

The text goes on to state:

We now state and prove the fundamental invariance theorem for loops. This the-
orem refers to an assertion P that holds before and after each iteration (provided
it holds before the first). Such a predicate is called a loop-invariant.

(12.43) Fundamental invariance theorem. Suppose
e {PAB}S{P} holds —i.e. execution of S begun in a state in which
P and B are true terminates with P true — and
e {P} do B — S od true — i.e. execution of the loop begun in a

state in which P is true terminates.

Then {P} do B — S od {P A—=B} holds. [In other words, if the loop
is entered in a state where P is true, it will complete in a state where
P is true and guard B is false]

The text proceeds to prove this theorem using the axiom of mathematical induction.
Let us translate the above programming construct into our setting, which we use to
accommodate linear algebra algorithms. Consider the loop

while B do
S
enddo

15

www.manaraa.com

where B is some condition and S is the body of the loop, the above theorem says that
e The loop is entered in a state where some condition P holds, and
e for each iteration, P holds at the top of the loop, and

e the body of the loop S has the property that if it is executed starting in a state where
P holds it completes in a state where P holds.

Then if the loop completes, it will do so in a state where conditions P and —B both hold.
Naturally, P and B are chosen such that P A =B implies that the desired linear algebra
operation has been computed.

A method that formally derives a loop (i.e., iterative implementation) approaches
the problem of determining the body of the loop as follows: First, one must determine
conditions B and P. Next, the body S should be developed so that it maintains condition
P while making progress towards completing the iterative process (eventually B should
become false). The operations that comprise S follow naturally from simple manipulation
of equalities and equivalences using matrix algebra. Thanks to the fundamental invariance
theorem, this approach implies correctness of the loop.

What we will argue in this paper is that for a large class of dense linear algebra
algorithms there is a systematic way of determining different conditions P that allow us
develop loops to compute a given linear algebra operation. The different conditions yield
different algorithmic variants for computing the operation. We demonstrate this through the
example of LU factorization without pivoting. Once we have demonstrated the techniques in
this simpler setting, we will also argue, although somewhat more informally, the correctness
of a hybrid iterative/recursive LU factorization with partial pivoting in Section 2.7.

2.4 A Case Study: LU Factorization

We illustrate our approach by considering LU factorization without pivoting. Given a non-
singular, n X n matrix ,A, we wish to compute an n x n lower triangular matrix L with
unit main diagonal and an n x n upper triangular matrix U so that A = LU. The original
matrix A is overwritten by L and U in the process. We will denote this operation by

A+ A=LUA)

to indicate that A is overwritten by the LU factors of A. Because FLAME produces many
variants of LU factorization, it is worthwhile to emphasize the fact that, if exact arithmetic
is performed, all variants will result in identical results. To see this assume that L,U; =
LyUs are two different factorizations. Multiplying both sides by L, ' on the left and U, !
on the right yields L = Ly'L; = UsUy' = U, where L is unit lower-triangular and U
upper-triangular. Now, L = U implies L = U = I. It follows that L; = Ly and U; = Us,
so our assumption has been contradicted and the proof of uniqueness is complete.

16

www.manaraa.com

2.4.1 A classical derivation

The usual derivation of an algorithm for the LU factorization proceeds as follows:
Partition

a1y || afy 1 0 viy || ufy
A= , L= , and U=
asy || Aso lo1 || La2 0 || Us

Now A = LU translates to

Q11 a% _ 1 || 0 V11 || ’U,’{Q _ V11 || ui';
as || A2z I || Lo 0 [Ua2 larvnr || loruly + LaoUss

so the following equalities hold:

_ T _ T
Q1 = Ui || 13 = Ujp

loruly, + LasUss

a1 vitlar || Ago
Thus, we arrive at the following algorithm
e Overwrite ay; and a, with vi; and uT,, respectively (no-op).
e Update agy + la1 = ag1/v11.
e Update Agy + Agy — lgguls.
e Factor Asy — LaaUsy (recursively or iteratively).

The algorithm is usually implemented as a loop, as illustrated in Fig. 2.1. When presented
in a classroom setting, this algorithm is typically accompanied by the following progression
of pictures:

T
R 1| ai, R
- | current 4 azif | Ay — Ziaﬁ
11 11

t

Here the double lines indicate how far the computation has progressed through the matrix.
At the current stage the active part of the matrix resides in the lower-right quadrant of
the left picture. Next, the different parts to be updated are identified and the updates
given (middle picture). Finally, the boundary that indicates how far the computation has
progressed is moved forward (right picture). It is this sequence of three pictures that we will
try to capture in the derivation, the specification of the algorithm, and the implementation
of the algorithm.

17

www.manaraa.com

A A
partition A — <M> where App is 0x0
Apr || ABr

do until Aggr is 0 x 0
Ago || aor | Aos

- Arp || Arr = = .
repartition = | aip || @11 | ais where ai; is a scalar
ApL || ABr

A20 as | Aso

a11 ¢ v11 = a11 (no-op)
aiy < ufy = afy (no-op)
azy + ly1 = az1 /v
Aoy < Ags — lQlu?Q

Ago | ao1 || Ao2

. . Arp || Arr T T

continue with — ajg | @11 || Q1o
AL || ABR

Asg | a21 || Ago
enddo

Figure 2.1: Unblocked lazy algorithm for LU factorization.

2.4.2 But what is the loop-invariant?

Notice that in the above algorithm the original matrix is overwritten by intermediate results
until finally it contains L and U. Let A indicate the matrix in which the LU factorization is
computed, keeping in mind that A overwrites A as part of the algorithm. Notice that after
k iterations of the algorithm in Fig. 2.1, A contains a partial result. We will denote this
partial result by Ap.

In order to prove correctness, one question we must ask is what intermediate value,
Ay, isin A at any particular stage of the algorithm. More precisely, we will ask the question
of what the contents are at the beginning of the loop that implements the computation of
the factorization (e.g., the loop in Fig. 2.1). To answer this question, partition the matrices

as follows: " " "
_ ATL ATR _ LTL 0
A= (k) (k) ’ L= (%) (%) ’
Apr || ABr Lgr || Lgr

O) . AW 400
U:< L2 I 20 T P 8
0 UBR ABL ABR

where Agcg, Lgfg, U}kL), and flgﬂ% are all k x k matrices and “T”, “B”, “L”, and “R” stand

for Top, Bottom, Left, and Right, respectively.
Notice that

A9 A9 (8] o\ (| v
AT [A o om) "o ol

18

www.manaraa.com

k k k k
(Ly | LU)
k k k k k k
LyrUrs || LaiUfn + LanUsn

so that the following equalities must hold:

AR = LB 2
B = LUl 22
B = U 2
AB, = IO+ o) 04

We now show that different conditions on the contents of A dictate different algorithmic
variants for computing the LU factorization, and that these different conditions can be
systematically generated from Equations 2.1-2.4.

Notice that in Equations 2.1-2.4 the following partial results towards the computa-
tion of the factorization can be identified:

INUFY. Ligp.Usp, L Ug. and I\UGS

Here we use the notation L\U to denote lower and upper triangular matrices that are stored
in a square matrix by overwriting the lower and upper triangular parts of that matrix. Recall
that L has ones on the diagonal that need not be stored. We restrict our study to algorithms
that employ Gaussian elimination and do not involve redundant computations. Further, we
require that one or more of the partial results contributing to the final computation have
been computed. A few observations:

o If L(;,)J has been computed, the elements of Ur}kL) has been computed as well.

e Since Lg} = Ag%U;kL) ~!, data dependency considerations imply that U;’“L) must be

computed before Lg%.

e Similarly, since U;k}% = L(ﬁ_lA(;})%, data dependency analysis implies that L(ﬁg needs
to be computed before Uq(g.

e Since the computation overwrites A, if Lgﬂz U;k}% has been computed, flgﬂ})% must contain
AR k) k)
BR BLYTR:

o If Lsakz)% has been computed, we assume that Ul(gk}; has been computed as well (see first
bullet).

o If L\U](;})% has been computed, Ag;% — Lg%U;k}% must have been computed first.

Taking into account the above observations, we give possible contents of Ay in
Table 2.1. The first and last conditions indicate that no computation has been performed or
the final result has been computed, neither of which is a reasonable condition to maintain

19

Ol LaCu Zyl_i.lbl

www.manaraa.com

Table 2.1: Possible loop-invariants for LU factorization without pivoting.

| Condition | A, contains
A(k) A(k)
No computation has occurred. (TI;L AT;CR

L U Ak
Only (2.1) is satisfied. \ TL H TR

BL H ABR

L\U TL H UTR

Only (2.1) and (2.2) have been satisfied.
BL H ABR

L H ABR

L\U Uk
Only (2.1), (2.2), and (2.3) have been satisfied. TL ‘ TR

L H ABR
. L\U TL |l Ura
(2.1), (2.2), and (2.3) have been satisfied and as OTRG)
much of (2.4) has been computed without comput- LBL H ABR LpiUrr

ing any part of Lg}% or Uék%.

(2.1), (2.2), (2.3), and (2.4) have all been satisfied.

Only (2.1) and (2.3) have been satisfied. (L\ TL H ATR)
LB
\Uj
LB

L TL H TI;)

BL ‘ L\UBR

20

www.manaraa.com

as part of the loop. This leaves five loop-invariants which, we will see, lead to five different
variants for LU factorization.

Note that in this paper we will not concern ourselves with the question of whether
the above conditions exhaust all possibilities. However, they do give rise to many commonly
discussed algorithms. In fact, in [23] six variants, called the ijk orders, of A = LU are listed.
The jki form is commonly known as a left-looking algorithm while the ikj method is left-
looking on AT . Together, they correspond to the row- and column-lazy variants discussed
in this paper. The kij and kji forms both correspond to what has been traditionally called
the right-looking algorithm; here, both would be deemed forms of the eager algorithm, one
a column- and one a row-oriented version. The ijk and jik forms are more commonly known
as the Doolittle (Crout) algorithm and correspond to row- and column-oriented versions
of the row-column-lazy variant considered in this document. The lazy algorithm discussed
in this paper has no corresponding variant in the ijk family of algorithms. Further, the
conditions delineated above yield all algorithms depicted on the cover of, and discussed
in, G.W. Stewart’s recent book on matrix factorization [71]. This comes as no surprise
as we, like Stewart, have adopted some common implicit assumptions about both matrix
partitioning and the nature of algorithmic advancement. Our a priori assumptions were
only slightly less constricting than those imposed by the authors who employed the ijk
scheme mentioned above. In this paper we have restricted ourselves to a consideration of
only those algorithms whose progress is “simple.” That is, each iteration of the algorithm
is geographically monotonic and formulaically identical. The combination of these two
properties leads to algorithms whose (inductive) proofs of correctness are straightforward
and whose implementations, given our framework, are virtually foolproof.

We will label any algorithm “Lazy” if it does the least amount of computation
possible in the inductive step and “Eager” if it performs as much work as possible at that
point. We explain our classification further in [43]. It needs to be evaluated against a large
class of algorithms before we make any definitive claims regarding is usefulness.

2.4.3 Lazy algorithm

This algorithm is often referred to as a bordered algorithm in the literature. Stewart, [71]
rather colorfully, refers to it as Sherman’s march.

Unblocked Algorithm

Let us assume that only (2.1) has been satisfied. To determine the body of the loop (state-
ment S), the question becomes how to update the contents of A:

(k k k
AR) ~ (D\USS || A%)
k - k k

)\ T

Zf+1 H k+1 \U (k+1) HAk+1
(B H k+1) (Ak+1 HAL+1)

21

www.manaraa.com

To answer this, repartition

(k) k k
(k) (k) Ago (a((n) ‘ Afm))
Arr || Arr
— = (k)T (k) | (B)T
ALk Alk aall Qi | %ia
BL BR W ok W
20 21 22
where Aé’g) is k x k (and thus equal to AE}%), and ozgli) is a scalar. Repartition flk, L, and

U similarly. This repartitioning identifies submatrices that must be updated in order to be
able to move the boundary (indicated by the double lines) forward. Notice that using this

new partitioning, Ay, currently contains

(k) k k
A® | 4% L\Uay (Lalf [4%)
Uiy || %% _
= BT NONNOE
A H A 10 11 12
20 asn 22
After moving the double lines, the partitioning of A becomes
k k k
k+1 k+1 AE)O) a((ll) Agz)
H A _ BT, BT
k+1 H AT k+1) = 10 1 12
" " k
(A% o)) ALY
and the partitionings of Ak+1; L, and U change similarly. Thus, Ak+1 must contain
L\U(k) u® A%)
(L\U (k+1) H A k+1 > (l(k)%] U?/i) a(/?f:r’
= 10 11 12

1)
Ak+

1)
HAk+

(A% [aff

k
A3y

)

In summary, in order to maintain the loop-invariant, the contents of A must be updated

like
. 3 k k k
0o | (o] 42) DU [Y | (A
- 1T (k) BT
(k)T (k) | (R)T — 10 Y11 a1y
@19 Q11 | G410 T D)
Ag’é) aéli) Agg) (Aso | az) Ay
Thus, it suffices to compute ué’i), l%), and Ugllc), overwriting the corresponding parts aé’i),
agﬁ), and ozgli).
To determine how to compute these quantities, consider
k k k (k
Ago) H agl) ‘ A((m) H ‘ H ‘ U :
E) T % BT | — BT BT
ago)k agkl) a52)k - lgo)k o Ok 0 U11 uﬁ%
Aéo) a§1) A() Léo) 151) LéQ) 0 0 U§2)
k) (k k)57 (k
00 Uo H Lgo)uél) ‘ Léo) U(g2)
= | 16 Ug [66 ugy + oy 1o "Ugy + "
By (k E) ;7 (R k) (% By (k
Lgo)U(go) Lgo)Uél) +l£1)U§1) ()U()+l(1)u(2) +L§2)U()

22

www.manaraa.com

partition partition
A A A A
A s TL TR A TL TR
ABL ABR ABL ABR
where A7y is 0 x 0 where A7y is 0 x 0
do until Agp is 0 x 0 do until Agp is 0 X0
determine block size b
repartition repartition
Arp || Arg Aoo || ao1 | Aoz Arp || Arg Aoo || Ao1 | Aoz
o [Anr) \—tlolou [afs o [Asn)\ el Au [Aw
BL BR Ao || a21 | A2z BL BR Aszg || A21 | Aa2
where o1 is a scalar where A1 is bx b
ag1 < uUgl = Laolam Aoy + Up1 = LaolAm
afy + 1y = oo Usy' Ao + Lio = A1oUpy'
a1 « vi1 = ann — Tuor A1 < L\Uy1 =LU(A11 — LioUo1)
continue with continue with
Ago | ao1 || Aoz Ago | Ao1 || Aoz
A A A A
< ATL ATR > — al) [an || o < ATL ATR) | Loldu A
BL BR Agg | asi || Aaa Br BR Azo | A2 || Az
enddo enddo

Figure 2.2: Unblocked and blocked versions of the lazy variant for computing the LU fac-
torization of a square matrix A (without pivoting).

From this equation we find that the following equalities must hold:

k k)7 (k) || (K k) (k k k) 7r(k
A(()o) =L60)Uéo) Hagn) =L60)“61) ‘Agm) ZL(()O)Uéz)
BT _ (0T (R (k BT, (k 3 BT _ (T BT
ag[;j :lgol)» Ué]?) Ozgkl):l&]i u[()]%) +U§k1) 13 a%{ =l§0; Uélf) +ué2) 0T Bk 22
Aéo) :Lgo)Uéo) ag1) =L50)Ué1) + lél)v§1) AgQ) zLéo)Uéz) + l£1)U§2) + LéQ)UQ(Q)
To compute ué’i) one must solve the triangular system Lé’g)uéﬁ) = aé’i). The result can
overwrite a[()li). To compute ZYS) we solve the triangular system Z%)TUég) = aglé)T. The
. (k)T . k) _ (k) (k)T (k)
result can overwrite a;,’ ~. To determine vi; we merely compute vy;" = ay7 — lig’ " ugy -

The result can overwrite agli). This motivates the algorithm in Fig. 2.2 (left) for overwriting
a given non-singular, n X n matrix A with its LU factorization.
To demonstrate that in deriving the algorithm we have constructively proven its

correctness, consider the following;:

Theorem 1 The algorithm in Fig. 2.2 (left) overwrites a given non-singular, n X n matriz,
A, with its LU factorization.

Proof: To prove this theorem, we merely invoke the Fundamental invariance theorem.
Here the guard B is Agr # 0 x 0, predicate P is

R L\U A
A contains = \Urg, ” ki where L\U,, is k x k
Apr | Asr
23

www.manaraa.com

and the statement S is the body of the loop in Fig. 2.2 (left).
First, notice that the statement

A A
Partition 4 = i“i
Apr||ABr

where Arrp is 0 x 0

has the property that after its execution P holds since L\U,,, Arr, and Apgy, are all empty
(they have row and/or column dimensions equal to zero) and Agr = A. Thus, just before
the loop is first entered

A- I\Upy ” At
Apr | Asr

and we conclude that P holds when k£ = 0.

Recall that the body of the loop was developed so that {P A B}S{P} holds, i.e. if
the condition holds at the top of the loop, then it holds at the bottom of the loop (just
before the enddo). Also, since at each step the size of Agp decreases by one, guard B will
eventually become false, {P} do B — S od true holds (i.e. execution of the loop begun
in a state in which P is true terminates). We have shown that all of the conditions of the
Fundamental invariance theorem hold. We therefore conclude that if the loop is entered in
a state where P holds, it will complete in a state where P is true and guard B is false.
INUrp, ” ATr

Apr | Asr
of the loop transpires when k = n. Thus the final contents of the matrix are A = L\U,,

>:ABR:A

This means that A contains () where Agp is 0 X 0 and completion

where L7y, and Uy, are unit-lower and upper-triangular matrices of order n. We conclude
that upon exiting the loop, the matrix has been overwritten by its LU factorization. a

Blocked Algorithm

For performance reasons it becomes beneficial to derive a blocked version of the above-
presented algorithm. The derivation closely follows that of the unblocked algorithm: Again
assume that only (2.1) has been satisfied. The question is now how to compute Ak+b from
A}, for some small block size b (i.,e. 1 <b < n). To answer this, repartition

k k k

A® [40 A || A5 | A

. TL TR | _ E % %
A= < A 3 A k) - Ag/{f)) Agé) Agg) (2‘6)

BL BR Ago) Aé1) Aég)

where Aéﬁ) is k x k (and thus equal to Agﬂ%), and Aﬁ) is b x b. Repartition L, U, and A,
conformally. Notice it is our assumption that Aj; holds

) L\US || A8 | g

Ag%) Agz) Ag%)
Al | Al | Al

i (Uy | Ay
gy 1455

24

www.manaraa.com

The desired contents of flkH, are given by

. A(k+b) A(kﬂ;)
At = (AZ;cLer) ‘ A(T;f}j-b) =
Apr, ‘ AR
Thus, it suffi U, Ly, Lk
us, it suttices to compute Uy,”, Liy’, Ly

k k
| g
k k k
AT A [A

, and Ul(f).

To derive how to compute these quantities, consider

k k k k k k k
AE)O) H A((n) ‘ A((]Q) LE)O) H 0 ‘ 0 U(go) H U(gl) ‘ U(gz)
— k E E k k E E
A = A§E> Aﬁ{ A§Z> = Lﬁg) Lﬁi) 0 o [Uf{

A | A3 | A% L) | L5 | L5 o | o [uv
k) pr(k E)pr(k k) r(k
LioUs | LUy’ | Liy Ugy

— B (k B (k E) g (k B (k B (k

ol 207 2 A o A S R A
LUy || Ly Usy’ + LU [L Usy’ + LU + Ly Uy

This yields the equalities

k k) r(k k k) r(k k k) pr(k
A((][)) :L((m) U(go)HA((n) :L((m) Uél) A(()2) :L((m) Ué2)

E E) 1 (k k E) 7 (k DITOING E) 7 (k B (k
A§2>:L§2>U[§2> Agg:ngUgiungU;{ Agf):ng)Uéi)+L§i)Ul(i) - (2.7)
A= AT = 0T = o+ o+ T

Thus,

1. To compute Ué’f) we solve the triangular system L

(k)

overwrite Agy .

To compute LYS)
overwrite AYS).

(

1

we solve the triangul

To compute L]i) and Ul(lf)

we simply update A

8’8) Ué’f) Aé’i). The result can

(

1

ar system L IS)U(%C) AYS). The result can

(

1

(

1

k) _
U=

k k k k k) 4 (k
1) « A 1) _Lgo) Ué Agl) _Ago)A((n)

after which the result can be factored into Lgli) and Ul(lf) using the unblocked algorithm.

The result can overwrite Ag’i).

The preceding discussion motivates the algorithm in Fig. 2.2 (right) and Fig. 2.3(b)
for overwriting the given non-singular, n X n matrix A with its LU factorization. A careful

analysis shows that the blocked algorithm do
relative to the unblocked algorithm.
The proof of the following theorem is

Theorem 2 The algorithm in Fig. 2.2 (right)
A, with its LU factorization.

es not incur even a single extra computation

similar to that of Theorem 1.

overwrites a given non-singular, n xn matriz,

25

www.manaraa.com

2.4.4 Row-lazy algorithm

As a point of reference, Stewart [71] calls this algorithm Pickett’s charge south.
Let us assume that only (2.1) and (2.2) have been satisfied. We will now discuss
only a blocked algorithm that computes AHb from A, while maintaining these conditions.
Repartition A, L, U, and Ay conformally as in (2.6). Our assumption is that Ay
holds

k k k
P B
Ay || AR | Az

iz (I\UYy || Uty

Do o | o
) -

The desired contents of flk+b are given by

k k k
1 TL TR
Ak+b = ~(F+05) ACE=)] = LlO L\Ugl) U12
Apr, BR

Ay | Ay Ay

Thus, it suffices to compute L10 L\U11 , and U1(§)- Recalling the equalities in (2.7) we
notice that

1. To compute Lglé) we can solve the triangular system Lglé) Ué[]f) = Aglf]). The result can

overwrite AYS).
2. To compute Lgli) and Ul(lf) we can update Aﬁ) — Aﬁ) - LYS) Ué’f) = Agli) - AYS)A[()]?
after which the result can be factored into L11) and Ul(f). The result can overwrite
k
AR,
3. To compute U1(§) we can update Aglé) — AY;) - Lgﬁ)Uég after which we solve the
triangular system L§’§>U1<’;> = Ag’;), overwriting the original A12 .
These steps and the preceding discussion lead one directly to the algorithm in
Fig. 2.3(c).
The proof of the following theorem is similar to that of Theorem 1.

Theorem 3 The algorithm in Fig. 2.8(c) overwrites a given non-singular, n X n matriz,
A, with its LU factorization.

2.4.5 Column-lazy algorithm

This algorithm is referred to as a left-looking algorithm in [27] while Stewart [71] calls it
Pickett’s charge east.

Let us assume that only (2.1) and (2.3) have been satisfied. Now it suffices to
compute Uéf), L\Uﬁ), and Léli). Using the same techniques as before one derives the
algorithm in Fig. 2.3 (d). Again, this algorithm overwrites the given non-singular, n x n
matrix, A, with its LU factorization.

The proof of the following theorem is similar to that of Theorem 1.

26

www.manaraa.com

A A
Partition A = i“i
ABL||ABr

where Arp is 0 x 0
do until Agris 0 x 0

Repartition
Agol||Ao1|A

Ari|Are \ Aoo A01 Aoz
A—BL”H 10 11 12

Azo||A21| A2
where A1 isb X b

(a) Eager:

A11 <~ L\U11 = LU(A11)
A « Uix = L;11A12
Aoy + Lot = A Ut
Ao+ Ay — Loy U

(b) Lazy: (c) Row-lazy:

View Ago as L\U View Ago as L\U,,

Ao1 + Lot = Loy Ao Arg + Lio = A10Upg'

Aig < Lig = AloU&)l Al L\U11 = LU(AH —
A« L\U,, = LUAu - L1oUo)

L1oUo1) Arz « Uiz = L} (A12 — L1oUsp2)
(d) Column-lazy: (e) Row-column-lazy:

View A[][] as L\UOO A11 — L\U11 = LU(A11 —
Ao1 + Uoi = Ly Aoy LioUo1)

Al L\(]11 = LU(A11 — Ao+ Upp = Ll_ll (A12 — Ll[]U[]Q)
LioUo1) As1 + Loy = (A21 — LaoUo1)Upy!
A1 + Lot = (As1 — LooUa) U’

Continue with
Aoo|Ao1||Ao2

(%“%) — | Ao/ An |4
BLI|EBR Ao Az [[Ass

enddo

Figure 2.3: LU factorization without pivoting for five commonly encountered variants.

27

www.manaraa.com

Theorem 4 The algorithm in Fig. 2.3(d) overwrites a given non-singular, n X n matriz,
A, with its LU factorization.

2.4.6 Row-column-lazy algorithm

This algorithm is often referred to as Crout’s methods in the literature [18].

We assume that only (2.1), (2.2), and (2.3) have been satisfied. This time, it suffices
to compute L\Uﬁ), Uf’;>, and Lgli), yielding the algorithm in Fig. 2.3 (e). Again, this
algorithm overwrites a given non-singular, n x n matrix, A, with its LU factorization.

The proof of the following theorem is similar to that of Theorem 1.

Theorem 5 The algorithm in Fig. 2.8(e) overwrites a given non-singular, n x n matriz,
A, with its LU factorization.

2.4.7 Eager algorithm

This algorithm is often referred to as classical Gaussian elimination.

We proceed under the assumption that (2.1), (2.2), and (2.3) have been satisfied,
and as much of (2.4) as possible has been computed, without completing the computation
of any part of Lggr and Upg. Repartition A, L, U, and A conformally as in (2.6). Notice,
our assumption is that Ay, holds

k k k k k k
ng) Agé) — Lﬁg) Uéi) A1k2 — Lgtl): Ué2k)
Ly A = Eol [A% - L

(WU | Uy

N | Uy |
Lo | Ak - LinUi'n))

The desired contents of flk+b are given by

(L\U k+b H U(k};b) >

k+D) k+b k+b k+b
" [A" - L Ur

k k

no | o g
k

= Lgo) L\Ugl) U1(2)

k k k k k k k
T AT o

Thus, it suffices to compute L\Ug’i), Léli), Ul(f), and to update Agg) Recalling the equalities
n (2.7) we find

1. To compute L§1 and U11) we factor A11 which already contains A11 — Lgﬁ) Ué’f). The

result can overwrite A11 .

2. To compute U])2 we update A52) which already contains A§2) - Lglé) Uég) by solving

(k)

Lgli) U1(2 = A;5, overwriting the original A;5 .

3. To compute L?>1) we update A21 which already contains Agk) Lgl(”] ") by solving
51) Ul(1 = A21 , overwriting the original A21 .

28

www.manaraa.com

4.

We then update Agg) which already contains Agg) - Lg’g) Ué’;) with Agg) - Lg’i)Ul(I;),

overwriting the original flgg)

The resulting algorithm is given in Fig. 2.3(a). Notice that this algorithm is the blocked
equivalent to the algorithm derived in Section 2.4.1.

The proof of the following theorem is similar to that of Theorem 1.

Theorem 6 The algorithm in Fig. 2.3(a) overwrites a given non-singular, n X n matriz,
A, with its LU factorization.

2.5 A Recipe for Deriving Algorithms

The derivations of the different algorithmic variants of LU factorization, detailed above,

were extremely systematic. The following recipe was used:

1.

2.

State the operation to be performed.

Partition the operands. Notice that some justification is needed for the particular way
in which they are partitioned. For LU factorization, this has to do with the fact that
blocks of zeroes must be isolated in L and U, as they are triangular matrices.

Multiply out all matrix products corresponding to this partitioning.

. Equate the submatrix relations that result from the partitioning of Step 3. These define

computations that the algorithm must perform in order to maintain correctness.

Pick a loop-invariant from the set of possible loop-invariants that satisfy the equa-
tions given in Step 4. Notice that this loop-invariant plays the role of an induction
hypothesis.

From that loop-invariant, derive the steps required to maintain the loop-invariant while
moving the algorithm forward in the desired direction. This requires the following
substeps:

(a) Repartition so as to expose the boundaries after they are moved.

(b) Indicate the current contents for the repartitioned matrices.

(c) Indicate the desired contents for the repartitioned matrices such that the loop-
invariant is maintained.

(d) Determine the computations required to transform (update) the contents indi-
cated in 6b to those indicated in 6¢, (Naturally, it must be verified that these
computations are possible.)

7. Update the partitioning of the matrices.

8.

Continue until the partitioning yields the null matrix for the “BR” submatrix.

29

www.manaraa.com

9. Classify the algorithm. We have developed a systematic way of classifying the derived
algorithms based upon the nature of the inductive step of the algorithm. While we
use this classification in the labeling of the algorithms in the previous section, we will
not go into further detail here.

A more complete recipe for a broader class of linear algebra operations can be found in [43].

We again point out that the recipe implicitly provides a proof of correctness for
the algorithm since Steps 5-6d emulate the proof by mathematical induction. Further,
the technique employed for deriving these variants of LU factorization generalizes to other
factorization algorithms, e.g. Cholesky and QR.

2.6 Encoding the Algorithm in C

In this section we briefly discuss how dense linear algebra algorithms, as presented in
Figs. 2.1-2.3, can be translated into code. We first show a more traditional approach
as it appears in popular packages like LAPACK. Next, we present an alternative framework
that allows implementation at a higher level of abstraction that mirrors how we naturally
present the algorithms. This second approach has been successfully used in PLAPACK and
our FLAME framework represents a refinement of this methodology.

2.6.1 Classic implementation with the BLAS

Let us consider the blocked eager algorithm for the LU factorization presented in Fig. 2.3
(a). This algorithm requires an LU factorization of a small matrix, A;y < L\U;;, =
LU fact.(Ay1), triangular solves with multiple right-hand-sides to update A1y < Uiy =
L1_11A12 and Az < Loy = A21U1_11, and a matrix-matrix multiply to update Asy <+
Aoy — LoyUys. The triangular solves and matrix-matrix multiply are part of the Basic
Linear Algebra Subprograms (BLAS) (calls to the routines DTRSM and DGEMM, respectively).
To understand this code, it helps to consider the partitioning of the matrix for a typical
loop index j, as illustrated in Fig. 2.4: Ay; is B by B and starts at element A(J,J), Aoy
is N-(J-1)-B by B and starts at element A(J+B,J) , Ay is B by N-(J-1)-B and starts at
element A(J,J+B), and Asy is N-(J-1)-B by N-(J-1)-B and starts at element A(J+B,J+B).
The resultant code is given in Fig. 2.5.

Given this picture, it is relatively easy to determine all of the parameters that must
be passed to the appropriate BLAS routines.

2.6.2 The algorithm zs the code

We would argue that it is relatively easy to generate the code in Fig. 2.5 given the algorithm
in Fig. 2.3(a) and the picture in Fig. 2.4. However, the translation of the algorithm to
the code is made tedious and error-prone by the fact that one has to think very carefully
about indices and matrix dimensions. While this is not much of a problem if one only had
to implement just one algorithm, real difficulties may arise when implementing a number

30

www.manaraa.com

J J+B

Aoo L‘Xm L‘on }J—l
J_—>
Ao gu gm }B

J+B——{[le—]@
Aso||A21 |A22 }N-(J-l)-B

(N
J-1 B N-J-B+1

Figure 2.4: Partitioning of matrix A with all dimensions annotated when Aygg = Arpp is
(=1 x(j=1).
SUBROUTINE LU_EAGER_LEVEL3(N, A, LDA, NB)

INTEGER N, LDA, NB, J, B
DOUBLE PRECISION A(LDA, *), ONE, NEG_ONE
PARAMETER (ONE = 1.0D00, NEG_ONE = -1.0D00)

DO J=1, N, NB
B = MIN(N-J+1, NB)
C A11 <- L\U11 = LU fact(A11)
CALL LU_EAGER_LEVEL2(B, A(J,J), LDA)
IF (J+B <= N) THEN

C A12 <- U12 = inv(L11) * A12
CALL DTRSM("LEFT", "LOWER TRIANGULAR", "NO TRANSPOSE", "UNIT DIAGONAL",
$ ONE, B, N-J-B, A(J,J), LDA, A(C J, J+B), LDA)
¢ A21 <- L21 = A21 x inv(U11)
CALL DTRSM("RIGHT", "UPPER TRIANGULAR", "TRANSPOSE", "NONUNIT DIAGONAL",
$ ONE, N-J-B, B, A(J,J), LDA, A(C J+B, J), LDA)
C A22 <- A22 - A21 % A12
CALL DGEMM("NO TRANSPOSE", "NO TRANSPOSE", N-(J-1)-B, N-(J-1)-B, B,
$ NEG_ONE, A(J+B, J), LDA, A(J, J+B), LDA, ONE, A(J+B, J+B), LDA)
ENDIF
ENDDO
RETURN
END

Figure 2.5: Fortran implementation of blocked eager LU factorization algorithm using the
BLAS. (Find the bug without referring to Fig. 2.4 or the text!)

31

www.manaraa.com

Partition A = (ﬂ“ﬂ
ABL||ABR
where A7y, is 0 x 0
do until Agr is 0 x 0
Repartition

Aool||Ao1|Ao:
ATL ATR 3 AOO AOI AOZ
W 10||A11|A12

Asg||A21|A22
where A1 isb X b

insert update here

Continue with
Aoo|Ao1||Ao2
<%“j:&> = Aio|A11||A12
BLI[BR Asg|Aa1||A22

enddo
Figure 2.6: Algorithm skeleton for LU factorization without pivoting.

of possible algorithmic variants for a given operation or, in the case of a library such as
LAPACK, implementing even a single such variant of each of a large number of operations.
One becomes even more acutely aware of these issues when distributed-memory architectures
enter the picture, as in ScaLAPACK.

In an effort to make the code look like the algorithms given in Fig. 2.3, while si-
multaneously accounting for the constraints imposed by C and Fortran, we have developed
FLAME. The algorithmic and code skeletons shared by the five variants for the LU fac-
torization, developed earlier in this paper, are given in Figs. 2.6 and 2.7, respectively. To
understand the code, it suffices to realize that A is being passed to the routine as a data
structure, A, that describes all attributes of this matrix, such as dimensions and method
of storage. Inquiry routines like FLA_0bj_length are used to extract information, in this
case the row dimension of the matrix. Finally, ATL, A0O, etc. are simply references into the
original array described by A.

If one is familiar with the coding conventions used to name the BLAS kernels, it is
clear that the following code segments, when entered in the appropriate place (lines 22-34)
in the code in Fig. 2.7, implement the different variants of the LU factorization:

Lazy algorithm

23 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,

24 ONE, A0O0, A10);
25 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
26 ONE, A0O, AO1);

27 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);
28 FLA_LU_nopivot_level2(A11);

32

www.manaraa.com

#include "FLAME.h"

void FLA_LU_nopivot_skeleton(FLA_Obj A, nb_alg)
{
FLA_Obj ATL, ATR, A00, AO1, AO2,
ABL, ABR, A10, A11, A12,
A20, A21, A22;

O OO~IDDT R WN -

FLA_Part_2x2(A, &ATL, /%%/ %ATR,

10 /% skrckskokskokokskokkkokk &/

11 &ABL, /**/ &ABR,

12 /* with */ 0, /* by */ 0, /* submatrix %/ FLA_TL);

13

14 while (b=min(min(FLA_Obj_length(ABR), FLA_Obj_width(ABR)), nb_alg) !'= 0)
15 {

16 FLA_Repart_2x2_to_3x3(ATL, /**/ ATR, &A00, /*x/ &AO1, &A02,

17 [* kkxkkkokkkokkkk k/ [k skkskokkskokkkokkkokkkokkkokk ok /

18 [*x/ &A10, /**/ &A11, &A12,

19 ABL, /#*%/ ABR #A20, /*%/ &A21, &A22,

20 /* with */ b, /* by */ b, /* A1l split from */ FLA_BR);

21 [% wkkkorckkokokokkokokokkokkokskokokokskokokokokkoksk ko okokokok ok ko skt ok ook sk ko koo ko ko ook ok skok ook ok ok /

insert code for update here

31 [k skokckskokokskokskokok ok ok ko ok ko sk ok ok ok ok sk ok skok ok ok ok skok sk ko ko sk ok skok ok ok ok skok sk ok ok ko sk ok skok sk kok ko sk ok kokkokok ok /
32 FLA_Cont_with_3x3_to_2x2(&ATL, /**/ &ATR, A00, AO1, /*x/ A02,

33 /*x/ A10, A11, /#x/ A12,

34 [* kxkokkkokkkokkkkk k/ [k kkkokkkokkkokkkokkkokkk k/

35 &ABL, /**/ &ABR, A20, A21, /xx/ A22,

36 /* with A11 added to submatrix */ FLA_TL);

37 }

38 1}

Figure 2.7: A code skeleton for the C implementation of many of the blocked LU factorization
algorithms using FLAME.

33

www.manaraa.com

Row-lazy algorithm

23 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
24 ONE, A0O, A10);

25 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, AO1, ONE, A11);
26 FLA_LU_nopivot_level2(A11);

27 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12);
28 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
29 ONE, A11, A12);

Column-lazy algorithm

23 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
24 ONE, A00, A01);

25 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, AO01, ONE, A11);
26 FLA_LU_nopivot_level2(A11);

27 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, AO1, ONE, A21);
28 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
29 ONE, A11, A21);

Row-column-lazy algorithm

23 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, AO1, ONE, A11);
24 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, AO1, ONE, A21);
25 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12);
26 FLA_LU_nopivot_level2(A11);

27 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
28 ONE, A11, A12);

29 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
30 ONE, A11, A21);

Eager algorithm

23 FLA_LU_nopivot_level2(A1l);

24 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
25 ONE, Al11, A12);

26 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
27 ONE, Al11, A21);

28 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A21, A12, ONE, A22);

2.6.3 Positive features of the FLAME approach

Naturally, one can argue that determining which of the two methods for coding the algo-
rithms might be deemed “superior” is simply a matter of taste. However, to support our
case, we list the following questions and/or observations:

e What if a bug were introduced into the code in Fig. 2.57 Indeed, in that code we
“accidentally” replaced N-(J-1)-B with N-J-B. This kind of bug is extremely hard
to track down since the only clue is that the code produces the wrong answer or
causes a segmentation fault. A similar bug is not as easily introduced into the code
implemented using FLAME since it does not contain indices. Furthermore, with this

34

www.manaraa.com

approach it is easy to perform a run-time check in order to determine if the dimensions
of the different matrix operands passed to a routine are consistent.

e When coding all variants of the LU factorization one inherently has to derive all
algorithms, leading to descriptions like those given in Fig. 2.3. However, translating
those to code like that given in Fig. 2.5 would require several careful considerations of
the picture in Fig. 2.4. Moreover, due to the detailed and extensive indexing involved
in that approach, considerable testing would be required before one could declare the
code bug-free. By contrast, given the algorithms, it has been argued that generating
all variants using FLAME is straightforward. As has already been mentioned, since
the code closely resembles the algorithm, one can be much more confident about its
correctness before the code is tested.

e What if we wished to parallelize the given code? Notice that parallelizing a small
subset of the functionality of LAPACK as part of the ScaLAPACK project has taken
considerable effort. The FLAME code can be transformed into PLAPACK code es-
sentially by replacing FLA_ by PLA_. This highlights the one-to-one correspondence
between FLAME and PLAPACK codes; this correspondence is found to be lacking
when one considers LAPACK and ScaLAPACK codes in the same light.

e What if we needed a parallel out-of-core version of the code? In principle, the
FLAME code can be transformed into Parallel Out-of-Core Linear Algebra PACK-
age (POOCLAPACK) code by replacing FLA_ by POOCLA_.

2.6.4 But what about Fortran?

Again using MPI as an inspiration, a Fortran interface is available for FLAME. Examples
of Fortran code are available on the FLAME web page, given at the end of this paper.

2.6.5 Proving the implementation correct

In Section 2.4.3 we proved correctness of the lazy algorithm and in subsequent subsections of
Section 2.4 asserted that the correctness of the other algorithms can be established in much
the same way. If the routines called by the described FLAME code correctly implement
the operations implied by their names, then it can be argued that the code itself is correct.
Indeed, debugging is not necessary.

There are a number of reasons that we are comfortable in making such a bold
assertion. The justifications for the statement rely upon features of both our systematic
algorithmic design methodology, the library supporting the implementation of the algorithm,
and to the relationship between the two.

The manner in which we systematically generate algorithms relies, primarily, on two
design pillars, which together make up FLAME. The first is that we have limited the class of
problems under consideration to those in linear algebra. The second is that our algorithms

35

www.manaraa.com

consistently build upon the fundamental invariance theorem. This restriction leads to the
development of algorithms whose correctness can be established.

Naturally, FLAME is designed to express these systematically generated algorithms
in a manner that is both concise and unambiguous. Therefore, the FLAME code can be
made to mirror the algorithms thus produced. This leads one to conclude that the two most
common sources of error are eliminated. The translation from algorithm to code is easily
automatable because of the one-to-one relation between the two, so that a very common
mistake, namely the code not reflecting the algorithm (when one considers a textual version
of the algorithm as it might be presented in a textbook), can be obviated. A second common
mistake made with such codes, indexing errors, is eliminated from the top-level expression
of FLAME code because FLAME does no explicit indexing. To be certain, there are a
few support routines within FLAME that perform indexing. However, these routines are
so small that they are amenable to both standard proof-of-correctness techniques and to
truly “exhaustive” testing. In a sense, these routines are analogous to FLAME’s “assembly
language” and their reliability is comparable to that of a robust compiler.

Because our method of derivation leads to a class of algorithms whose proof of cor-
rectness is straightforward and since the language we use to express the produced algorithms
should not lead to any (unintentional) mistranslation from algorithm to code, we believe
that the coupled system leads to programs whose correctness follows from a mathematical
derivation of the algorithm.

2.7 LU Factorization with Partial Pivoting

We now demonstrate that the techniques that we introduced using the example of LU
factorization without pivoting are also applicable to the case of LU factorization with partial
pivoting. The latter algorithm is the one commonly implemented, but involves complications
that have traditionally made its derivation coding a more intricate and time-consuming
procedure.

2.7.1 Notation

Let I,,, denote the m x m identity matrix and P, (i) be the m x m permutation matrix such
that P, (i)A only swaps the first and ith rows of A. Here, we consider an m x n matrix, A,
where m > n and define

I 1 0 I 0 p
Pm . RN _ = ~ D Pm
(Po; 1.+ Ph—1) (0 Pu—pt1(pr—1)) (0 Pa-i(p1)))

and Pp,,i.; = Pr(pi, ..., pj). Here py equals the index, relative to the top row of the currently
active matrix (Agg in previous discussions), of the row that is swapped at the kth step of
LU factorization with partial pivoting. Thus Py, (po, p1,- -, pr—1)A equals the matrix that
results after swapping rows 0 and pg followed by swapping rows 1 and p; + 1, etc., in that

36

www.manaraa.com

order. Also, Pp,;;:;A equals the matrix that results after swapping rows i and p; followed by
i1+ 1 and p;4+1 + 1, etc., in that order.
It is well-known that LU factorization with partial pivoting produces the LU fac-
torization
Prom—1A=LU (2.8)

2.7.2 Derivation of the invariants

Now, let us examine the possible contents of matrix A = PA, where P = Pp0.5—1, the
matrix as it has been overwritten partially into the LU factorization with partial pivoting.

Ll 0 Ay = LU
0 || Pm—k:k:n—l

Equation 2.8 is equivalent to

or
- I; 0
Ay =] o LU
0| QT
where
Q = P’m—k;k:n—l
Partitioning
: AR AT ty | o Uy | Uy
A = — = , L= z 7 , and U = - ,
Apr || ABr Lgr || Ler 0 Ugr
we find that
(A% A%) _ <1k|| 0)(Léf“%H 0)(Ué’?HWi%)
(% (& - 3 % 3
Apr || AR 0 H QT L%% H L(Bl)? 0 H UJ(BJ)%
k

k) 77k
_ (L2 Ury | %)
= =R) | 70 1B L 7 (k) gk
LipUs'y | LUt + LshUsh

where Lpr = Qig% and Lggr = Qf,g%. Thus, for 0 < k < n, the equalities in Equa-
tions 2.1-2.4 must again hold, except that Lg%, Lgcl)%, and A®) are now replaced by zg’“},
zg“}i, and A% respectively. We mention, as before, that unaccented submatrices of L and
U denote final values. As for LU factorization without pivoting, different conditions on the
contents of Ay, logically dictate different variants for computing the LU factorization with
partial pivoting. These are given in Table 2.1, with the provisos mentioned above. Notice
that in addition, a necessary condition is that pg,...,pr_1 have been computed.

The second and third conditions listed in Table 2.1 are impractical since the com-
putation of pg,...,pr_1 requires that the entries of Lg} be computed. By taking entries 4

through 6, listed in Table 2.1, together with the requirement that py,..., pr—1 have been

37

www.manaraa.com

computed, and using them as part of predicate P, three different variants for LU factor-
ization with partial pivoting can be derived. These conditions again lead to column-lazy
(left-looking), row-column-lazy (Crout), and eager (right-looking) variants, respectively, this
time with partial pivoting incorporated.

2.7.3 Derivation of the eager algorithm

Let us concentrate on the eager algorithm. Notice, our assumption is that Ay, holds

o) | v o' | Tgy Ugs
A, = TL TR | _ 7 (k) AR _ 7R (R) T F(k) (k)77 (R)
Ak 7 H A Liq Ay —Lig Uy | Ay — Lig Uy,
=k G B (k) | F(k B 71 (k
w [Asn)\~ E T e | A - T

The desired contents of flk+b are given by

PO A el R
k+b D) H AkFD)

BIL BR
k k k
no | o g
k
= ng) L\Ugl) U1(2)

7 (k k T(k 7 (k k 7 (k k
A PR A

20 20
L\UY;) and Lé’i) are defined by Equation 2.9, below, and Lg’f]) = EYS).
With some effort it can be verified that the following updates have the desired effect:

_ 7 (k) i (k)
where, Ql = Pm—k;k:k+b—1: ASBI’CI)-Z = QlAgl)-E: and <%1%r> — Ql (%) Note that

e Compute Q1, given by {p,...,prso—1}, L, U™ and L such that

overwriting

i® P
e Permute and overwrite: j%r — Q1 ?I%T
20 20

i® i®
e Permute and overwrite: j%r — Q1 WI%T }

e Update A% 70 = 1710 40 ang 40 40 _ z0ph)

38

;nbLLLAﬁLEEjl..iLBI

www.manaraa.com

A A
Partition A = J“i and p = P
AprL||ABR PB

where Ay is 0 X 0 and pr has 0 elements

do until Agr is 0 x 0
Determine block size b
Partition

Aogol||Ao1|A
Aril|Arr \ Aoo A01 Aoz
A—BL”m 10 11 12

Asg||A21|A22
where A1 isb x b
Partition

(pr) Po
= p1
PB Pa

where p; has b elements
Partition
_ (1) (2)
Apr = (AlBR | ABr)
where A1) has width b.

L\U
i [(5)]
Apr + P(p1)ABL
2 2
AR P(p1)AR)
Arg = Uiz = L] A12
Ay + Azs — L21Uis

Continue with
Aoo|Ao1|[Ao2
(%“ii) = Aio|A11||A12
BLII“BR Asg|A2r||A22

Po
(pr): e
bs p2

Figure 2.8: Eager blocked LU factorization with partial pivoting.

enddo

39

www.manaraa.com

OO UURRW N

void FLA_LU(FLA_Obj A, FLA_Obj ipiv, int nb_alg)
{
< declarations >
FLA_Part_2x2(A, &ATL, /*%/ &ATR,
/% sokskokskokskokskokkokkok %/
&ABL, /**/ &ABR,
/* with */ 0, /* by */ 0, /* submatrix */ FLA_TL);
FLA_Part_2x1(ipiv, &ipivT,
/% kkkkkk k[
&ipivB,
/* with */ 0, /* length submatrix %/ FLA_TOP);

while (b = min(min(FLA_Obj_length(ABR), FLA_Obj_width(ABR)), nb_alg))
{
FLA_Repart_2x2_to_3x3(ATL, /x%/ ATR,
/% kkkkkkkkkkkkk k/

&A00, /**/ &AO1, &A02,
/% kkskokokkokkokkok Rk okokkkkokkk k[
/*%/ %A10, /*x/ &A11, &A12,
ABL, /%x/ ABR, &A20, /**/ &A21, &A22,
/* with */ b, /* by */ b, /* A1l split from %/ FLA_BR);

FLA_Repart_2x1_to_3x1(ipivT, &ipiv0,
/% kkkkx %/ /% kkkxkx %/

&ipivl,

ipivB, &ipiv2,

/* with */ b, /* length ipivl split from %/ FLA_BOTTOM);
FLA_Part_1x2(ABR, &ABR_1, &ABR_2,
/* with */ b, /* width submatrix */ FLA_LEFT);
[/ ko ko ok ok ok ok sk ok ok ok ok ok ok ko ok ok ok ok ok ok sk ok ook ko ok ok ok ok ok ok ok ok ok sk ok ook ok ook sk ok ook ko sk sk ok ook ko ok ok ok ok ko ok K ko /

if (nb_alg <= 4) FLA_LU_level2(ABR_1, ipivl);
else FLA_LU (ABR_1, ipivl, nb_alg/2);

FLA_Apply_pivots(FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipivi, ABL);
FLA_Apply_pivots(FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipivi, ABR_2);
FLA_Trsm(FLA_SIDE_LEFT, FLA_LOWER_TRIANGULAR,

FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,

ONE, A11, A12);
FLA_Gemm(FLA_NO_TRANSPOSE,FLA_NO_TRANSPOSE, MINUS_ONE,A21,A12,0NE,A22);

/] ko ok ok ok ok ok ok sk o ok o ok ok o ok sk o ok sk ok ok sk o ok o o ok ok ok sk o ks ok ok o ok sk o ok ko ok o ok o ok sk o ok ok ok ok o ok o o ok o K ok o ok o ok ok ok /
FLA_Cont_with_3x3_to_2x2(&ATL, /*x/ &ATR, A00, AO1, /*x/ AO2,
/*%/ A10, A11, /*x/ A12,
/% skskokoskoskoksksk sk ok sk ok sk ok % / /% skokokskokokokokskokskokskokskokskok k /
&ABL, /*%/ &ABR, A20, A21, /%x/ A22,
/% with A11 added to submatrix */ FLA_TL);

FLA_Cont_with_3x1_to_2x1(&ipivT, ipiv0,
ipivi,

/% kkokkk %/ /% kkkkk k/
&ipivB, ipiv2,

/* with ipivl added to %/ FLA_TOP);

Figure 2.9: FLAME recursive LU factorization with partial pivoting.

40

www.manaraa.com

In Fig. 2.8 we show how an eager blocked LU factorization with partial pivoting
can be expressed in our algorithmic format. In this algorithm, the operation LUy (B)
returns the result of an LU factorization with partial pivoting of matrix B, as well as the
pivot indices. In that figure, p; is a vector of pivot indices and P(p;) takes the place of
Pr kkikgb1-

An unblocked algorithm results when the block size, b, is always chosen to equal

L\Ull
(L21 > y D1

is replaced by a determination of the index of the element in vector Ag}%, followed by a swap
of that element with the first element of that vector, and finally a scaling of the elements of
Aoy by 1/A;11. (Notice that now As; is a vector and Ay is a scalar.) In other words, the
operation in Equation 2.10 is replaced by

unity. In this case, the operation

(1)

[AGhm] « = LUpie (AR R) (2.10)

Choose p; s.t. | [Agl)q] | = max; | [Agl)ﬁz] |
p1 3

Swap [A%] L [Ag;]

Agl «— Lgl = A21/A11 "

Here [z], indicates the ith element of vector z. It is important to realize that multiple

partitionings of the same matrix reference the same data. Thus after swapping the elements

of Ag}z: A1 contains what was [Agl)q} before the swap.
p1

2.7.4 Implementation

A FLAME implementation of the blocked algorithm in Fig. 2.8 is given in Fig. 2.9. Notice
that a FLAME implementation of the unblocked algorithm would look similar. Let us
assume that the latter is correctly implemented in the FLAME routine

void FLA_LU_level2(FLA_Obj A, FLA_Obj ipiv)

Now, the correctness of algorithm in Fig. 2.8 depends only on the correctness of the LU
factorization with partial pivoting of Ag}% and the other operation. Thus, there is the
option of implementing the LU factorization of the panel Ag}% as a recursive call to the
given routine (line 31). Only when the panel becomes very small is a routine that uses
level-2 BLAS (matrix-vector computations) called (line 30).

Notice that the implementation is very flexible in that it is neither purely recursive
nor purely iterative. By playing with the algorithmic block size b (nb_alg), one can attain a
purely recursive algorithm (when b = n/2 for an m x n input matrix A), purely iterative (by
always calling FLA_LU_level?2 for the subproblem) or an iterative algorithm that recursively
calls itself. An induction on the level of the recursion would establish the correctness of the
given code. A more detailed discussion on the correctness of recursively formulated linear
algebra algorithms can be found in [49, 29)].

41

www.manaraa.com

SYMM C« a(L+LTB + BC C+ a(U+UTB+pC

C « aB(L+ L) + C C« aB(U +UT) + BC
SYRK 10(C) + alo(AAT) + Blo(0) up(C) + aup(AAT) + pup(C)
10(C) « alo(AT A) + Blo(C) up(C) + aup(AT A) + Bup(C)

SYR2K 10(C) + alo(ABT + BAT) + Blo(0) up(C) < aup(ABT + BAT) + Bup(C)
10(C) + alo(ATB + BT A) + Blo(C) up(C) + aup(ATB + BT A) + Bup(C)

TRMM | B < aLB B+ aL™B B < aUB B+ aUTB
B + aBL B+ aBLT B + aBU B+ aBUT

TRSM | B« oL 'B B+ aL TB B+ aU 1B B+ aU TB
B+ aBL! B+ aBL T B+ aBU1 B+ aBU T

Figure 2.10: Level-3 BLAS operations implemented as part of the productivity experiment.

2.8 Experiments

In this section, we report the results of three different experiment. The first measures the im-
pact that the FLAME approach has on productivity. The second experiment demonstrates
FLAME make the implementation of high-performance linear algebra algorithms more ac-
cessible to novices. In the final experiment we demonstrate that the attained performance
is superb.

2.8.1 Productivity experiment

As an experiment to measure, albeit roughly, the degree to which FLAME reduces code
development time, one of the authors implemented all level-3 BLAS operations given in
Fig. 2.10 in terms of matrix-matrix multiplication. This exercise can easily require months
to complete, even by a programmer who is experienced in the implementation of such oper-
ations. This includes time spent on extensive testing of correctness of the implementations.
The entire library of operations was completed using FLAME in a matter of about ten
hours, including testing. As of this writing, we have used the resulting library for about
nine months without encountering a bug in the implementations. The resulting code is
included on the FLAME webpage given at the end of this paper. The prototype imple-
mentation of FLAME required to support the implementations of the level-3 BLAS took
approximately one man-week.

It should be noted that the number of lines of code required for the implementation
is not necessarily less than that required for a more conventional implementation. This is
already evident when considering Figs. 2.5 and 2.7. However, the effort is greatly reduced
by the fact that the subroutines for the different operations use similar code skeletons.
Moreover, we believe that the resulting code is substantially more readable.

42

www.manaraa.com

2.8.2 Accessibility experiment

It is our claim that the FLAME approach to the derivation and implementation of linear
algebra algorithms greatly simplifies the development of linear algebra libraries. To demon-
strate this, we handed a recipe for deriving algorithms, similar to the one in Section 2.5,
to a class of computer science undergraduates at UT-Austin. These students had a limited
background in linear algebra and essentially no background in high-performance comput-
ing. Using the FLAME approach they implemented blocked algorithms for linear algebra
operations that are part of the level-3 BLAS. The results of this experiments can be found
in [43].

2.8.3 Performance experiment

To illustrate that correctness, simplicity and modularity does not necessarily come at the
expense of performance, we measured the performance of the LU factorization with pivoting
given in Fig. 2.9 followed by forward and backward substitution, i.e., essentially the LIN-
PACK benchmark. For comparison, we also measured the performance of the equivalent
operations provided by ATLAS R3.2 [76].

Some details: Performance was measured on an Intel (R) Pentium (R) III processor-
based laptop with a 256K L2 cache running the Linux (Red Hat 6.2) operating system. All
computations were performed in 64-bit (double precision) arithmetic. For both implemen-
tations the same compiler options were used.

In Fig. 2.11 we report performance for four different implementations, indicated by
the curves marked

ATLAS: This curve reports performance for the LU factorization provided by ATLAS R3.2,
using the BLAS provided by ATLAS R3.2.

ATL-FLAME: This curve reports the performance of our LU factorization coded using FLAME
with BLAS provided by ATLAS R3.2. The outer-most block size used for the LU fac-
torization is 160 for these measurements. (Notice that multiples of 40 are optimal for
the ATLAS matrix-matrix multiply on this architecture.)

ITX-FLAME: Same as the previous implementation, except that we provided our own op-
timized matrix-matrix multiply (ITXGEMM). Details of this optimization are the
subject of another paper [42]. This time the outer-most block size was 128. (No-
tice that multiples of 64 are optimal for the ITXGEMM matrix-matrix multiplication
routine on this architecture.)

ITX-FLAME-opt: Same as the ITX-FLAME implementation, except that we optimized the
level-2 BLAS based LU factorization of an intermediate panel as well as the pivot
routine by not using the high-level FLAME approach for those operations. For these
routines we call DSCAL, DGER, and DSWAP directly.

For all implementations, the forward and backward substitutions are provided by the ATLAS
R3.2 DTRSV routine.

43

www.manaraa.com

LU with pivoting on Intel PIll (650 MHz)

500 T T T T
450
o 400[
o
o}
_I
L
> 3500
£
Q
e
G 300f
£
£
i
Qo 250
I X ATLAS
B + ATL-FLAME
' O ITX-FLAME
200 * —% ITX-FLAME-opt i
|
P
150 | | | |
0 500 1000 1500 2000 2500

matrix dimension n

Figure 2.11: Performance of LU factorization with pivoting followed by forward and back-
ward substitution.

Notice that for small matrices the performance of ATL-FLAME is somewhat inferior to
that of ATLAS, due to the overhead for manipulating the objects that encode the informa-
tion about the matrices. This is due to the fact that this manipulation of objects introduces
an O(n) overhead which is amortized over a computational cost that is O(n®). When the
level-2 BLAS based LU factorization is coded without this overhead, the performance is
comparable for small matrices. The performance boost witnessed when the ITXGEMM
matrix-matrix multiply kernel is used is entirely due to the superior performance of that
kernel, relative to the ATLAS DGEMM implementation.

It is important to realize that the performance difference between the implementa-
tion offered as part of ATLAS R3.2 and our own implementation is not the point of this
performance comparison or, more generally, of this paper. With some effort either imple-
mentation can be improved to match the performance of the other. Our primary point is
that FLAME enables one to expend markedly less time to implement these algorithms in
a provably correct manner. At the same time, the resulting implementation attains perfor-

44

Ol LAC U Zyl_ﬂbl

www.manaraa.com

mance comparable to that of, what are widely considered to be, standard high-performance
implementations.

2.9 Related Work

Libraries for dense linear algebra operations have often led advances in software engineering
for scientific applications. The first such package to achieve widespread use and to embody
new techniques in software engineering was EISPACK [68]. EISPACK was also likely the
first such package to pay careful attention to the numerical stability of the underlying algo-
rithms. The mid-1970s witnessed the introduction of the Basic Linear Algebra Subprograms
(BLAS) [55]. At that time, the BLAS were a set of vector operations that allowed libraries to
attain high performance on vector supercomputers while remaining highly portable between
platforms, simultaneously enhancing modularity and code readability. The first successful
library to exploit these BLAS was LINPACK [22]. By the mid-1980s, it was recognized
that in order to overcome the gap between processor and memory performance on modern
microprocessors it was necessary to reformulate matrix operations in terms of matrix-matrix
multiplication-like operations, the level-3 BLAS [25]. LAPACK [5], first released in the early
1990s, is a high-performance package for linear algebra operations written in terms of the
level-3 BLAS. LAPACK offers a functionality that is a super set of LINPACK and EIS-
PACK while achieving high performance on essentially all sequential and shared-memory
architectures in a portable fashion.

A major simplification in the implementation of the level-3 BLAS themselves came
from the observation that they can be cast in terms of optimized matrix-matrix multipli-
cation [1, 47, 52]. Further, the performance of the resulting more portable system was
comparable to the vendor-supplied BLAS in many cases.

With the advent of distributed-memory parallel architectures, a parallel version
of LAPACK, ScaLAPACK [15], was developed. A major design goal of the ScaLAPACK
project was to preserve and re-use as much code from LAPACK as possible. Thus, all layers
in the ScaLAPACK software architecture are designed to resemble similar layers in the
LAPACK software architecture. It was this decision that complicated the implementation
of ScaLAPACK. The introduction of data distribution (across memories) creates a problem
analogous to that of creating and maintaining the data structures required for storing sparse
matrices. The mapping from indices to matrix element(s) was no longer a simple one.
Combining this complication with the monolithic structure of the software led to code that
was laborious to construct and is difficult to maintain. Our own Parallel Linear Algebra
Package (PLAPACK) achieves a functionality similar to that of ScaLAPACK, targeting the
same distributed-memory architectures while using a FLAME-like approach to hide details
related to indexing into and distribution of matrices [74]. Indeed, the primary inspiration
for FLAME came from PLAPACK.

A number of recent efforts have explored the notion of utilizing hierarchical data
structures for storing matrices [4, 46, 48]. The central idea is that, by storing matrices by
blocks rather than by row- or column-major ordering, data preparation (copying) for good

45

www.manaraa.com

cache re-use is virtually eliminated. Combining this with recursive algorithms that exploit
this data structure, impressive performance improvements have been demonstrated. Notice
that more complex data structures for sequential algorithms introduce a complexity similar
to that encountered when data is distributed to the memories of a distributed-memory
architecture. Since PLAPACK effectively addressed that problem for those architectures,
we have strong evidence that FLAMBE can be extended to accommodate more complex
data structures in the context of hierarchical memories.

2.10 Chapter Summary

A colleague of ours, Dr. Timothy Mattson of Intel, recently made the following observation:
“Literature professors read literature. Computer Science professors should, at least occa-
sionally, read code.” When one does this, certain patterns emerge and one tends to become
more readily able to distinguish good code from bad.

In this chapter, we have illustrated that a more formal approach to the design
of matrix algorithms, combined with the right level of abstraction for coding, leads to a
software architecture for linear algebra libraries that is dramatically different from the one
that resulted from the more traditional approaches used by packages such as LINPACK,
LAPACK, and ScaLAPACK. The approach is such that the library developer is forced to
give careful attention to the derivation of the algorithm. The benefit is that the code is a
direct translation of the resulting algorithm, reducing opportunities for the introduction of
common bugs related to indexing. Our experience shows that there is no significant loss
of performance. Indeed, since more variants for a given operation can now be more easily
developed we often observe a performance benefit from the approach.

Let us again examine the observations of Dijkstra:

(i) When exhaustive testing is impossible —i.e., almost always— our trust can only
be based on proof (be it mechanized or not).

(ii) A program for which it is not clear why we should trust it, is of dubious
value.

In this chapter, and through years of experience writing parallel linear algebra libraries, we
have learned this lesson the hard way. While a large percentage of code and an even larger
percentage of effort was devoted to the development of test code for packages like LAPACK
and ScaLAPACK, we believe that the more formal and systematic approach that under-
lies FLAMBE and PLAPACK has reduced the need for such testing, while simultaneously
increasing our confidence in the implementation.

(iv) Given the proof, deriving a program justified by it, is much easier than,
given the program, constructing a proof justifying it.

Notice that our approach carefully derives the program, making the proof of its correctness
an inherent part of its derivation.

46

www.manaraa.com

(iii) A program should be structured in such a way that the argument for its
correctness is feasible and not unnecessarily laborious.

Since the code reflects the algorithm, the argument that the algorithm is correct carries over
to an argument that the code is correct.

Throughout this chapter we have focused on the correctness of the algorithm. This is
not the same as proving that the algorithm is numerically stable. While we do not claim that
our methodology automatically generates stable algorithms, we do claim that the skeleton
used to express the algorithm, and to implement the code, can be used to implement known
algorithms with known numerical stability properties. It also facilitates the discovery and

implementation of new algorithms for which numerical properties can then be subsequently
established.

47

www.manaraa.com

Chapter 3

From Variant to Multiple
Versions

This chapter introduces a coding environment that allows the user to implement algorithms
in a higher level language than FLAMBE (seen in Chapter 2). This language, dubbed
“PLAWright,” is the interface to the automated system, the PLANALYZER, discussed in
the next three chapters of this dissertation. The reader is referred to Figure 3.1. In this
figure, the automated components of this dissertation are depicted in an abbreviated form.
This chapter focuses on, the “High-level Program,” which is to be input.

Subsequent chapters demonstrate that this programming approach does not require
one to forsake performance considerations when moving to a computational environment.
In this chapter, the focus is on the high level of abstraction in programming which frees the
user from many low-level concerns. This allows the programmer to utilize algorithms that
bear the promise of increased performance, but might have been overlooked because of the
required investment in programming, debugging, and maintenance time and effort [7].

3.1 Motivation

There are a number of reasons to adopt the coding style delineated in this chapter. Some of
those motivating factors present themselves in the context of sequential systems while others
are made apparent only when distributed computational environments are considered. The
issues and difficulties associated with traditional approaches are discussed here along with
an overview of the solution advocated in this work.

3.1.1 Coding Matrix Algorithms: The Sequential World
There are two traditional strategies for coding sequential matrix algorithms:

1. Simple indexing into the original array [22] and

48

www.manaraa.com

High-level
Program

Machine Annotated
SpeC|f|cs_>> PLANALYZER| << PLAPACK
Library calls
PLAPACK

Efficient C/Fortran

Figure 3.1: Overview of the PLANALYZER

2. Indexing combined with a standard library supplying computational kernels [5] such
as the Basic Linear Algebra Subprograms (BLAS) [26, 25].

Problems with Traditional Approaches

As has been mentioned, both of these approaches share the same shortcomings. Both ap-
proaches require that one keep track of where in the matrices the computations are occurring.
The amount of bookkeeping required to do this as algorithms become more sophisticated
is daunting and error-prone. In order to avoid mounting design and maintenance costs,
algorithms that are more ambitious are often abandoned for this reason.

Notice that the original derivation of these algorithms does not involve these indices.
It is the attempt to mesh two ways of viewing matrices that appears to cause the problem.

3.1.2 Coding Matrix Algorithms: Extending to Parallel

Traditionally, extending a library [15] or an integrated development environment [72] to a
parallel environment has involved the goal of maximizing code re-use. Some newer software
systems [19] appear to view this goal as secondary and they provide some tools for the
integration of alien modules.

In contrast, software systems with a more coherent “vision,” such as PETSc [9] and
PLAPACK [74], take a more unified view of the computational environment and present the

49

www.manaraa.com

user with a library that has a more consistent interface. These libraries also avoid the pitfall
of hiding parallelism in order to avoid added complexity. They expose levels of parallelism
to the algorithmic designer in a flexible manner [8].

Problems with Traditional Approaches

While the re-use of existing library components is a laudable goal, we think that it is
unnecessarily constricting. For example, the ScaLAPACK project [15] attempts to make
maximal re-use of LAPACK [5] components. This approach forces one to view parallel
computational systems as vastly more complex than sequential systems. While it is true
that such architectures are somewhat more complicated, it is the adaptation of sequential
libraries to parallel environments that causes many programming errors. The troublesome
artifacts of such adaptation include lengthening parameter lists and poorly documented
interactions between levels of both hardware and software.

The second error that can be seen in the design of some of these software packages
is an unfortunate coupling of computation and communication libraries. An example is
ScaLAPACK’s initial coupling with the Basic Linear Algebra Communication Subprograms
(BLACS) [6] routines. While part of the problem rested in the non-modular nature of such a
tightly-coupled arrangement, a more profound penalty is incurred by the limited breadth of
abstraction. Some communications patterns that are not supported by the BLACS library
arise naturally in parallel linear algebra routines. An example is the BLACS library’s
inability to redistribute an n x 1 matrix object across the entire processor grid (i.e. view
the grid as a linear processor array). This operation is often important for load-balance in
linear algebra solver algorithms [28].

3.1.3 Proposed Solution

If the source of the problem is the interaction between design systems and abstraction sets
that are incompatible, it makes sense to eliminate this conflict. The development of an
abstraction set that reflects the derivation of the algorithms can minimize the severity of
this conflict.

The proposed solution for addressing the difficulties in the parallel environment is
to couple the philosophy of libraries, such as PLAPACK, with the ease of programming
available in environments such as the one provided by MATLAB [58]. This allows the user
to exploit or insulate themselves from the details of the parallel programming environment.
Allowing the user to code in this manner is not only easier on the user, but allows the user
to implement algorithms that are more sophisticated.

Chapter 2 demonstrated that the goal of coupling the design system and the ab-
straction set available to the implementor is achievable using conventional languages. Given
the initial derivation, and the problems expounded above, it seems that many of the prob-
lems encountered could be obviated if one were allowed to code in a format such as the
one depicted in Figure 3.2. The same script may be translated into code that operates on a
single processor or into code that operates on multiple processors. In this case, the efficiency

a0

www.manaraa.com

of the resulting code relies on the sophistication of the translator and the underlying library.
In addition, as is discussed in Section 3.1.4, the same software system allows the user to
implement both other variants (Figure 3.3) of the algorithm as well as specialized versions
(Figure 3.4) while programming in the same style.

1 L has_property unit_lower_triangular ; // (* Permanent Property *)
2 U has_property upper_triangular ; // (% Same as non-unit *)
3 A has_property square ; // (* Actually, Square here *)
4 L === A ; // {Recursive} {Permanent} (* Establish name equivalence *)
5 U === ; // {Recursive} {Permanent}
6 partition A => / ATL # ATR \
7 | R |
8 \ ABL # ABR / where ATL is 0 by O ;
9 do until ABR is 0 by 0
10 partition / ATL # ATR \
11 | st |
12 \ ABL # ABR /
13 => / AOO # AO1 | AO2 \
14 | SRR R RS R SRS RS |
15 | A10 # A11 | A12 |
16 [--—-- - |
17 \ A20 # A21 | A22 /
18 where A1l is local and
19 A11 is locally square and
20 A11 is nb by nb ; // No larger than is implied
21 A01 = UO1 <- LOO~"-1 * AO1 ;
22 A10 = L10 <- A10 * U00~-1 ;
23 A11 = (L11\U11) <- A11 - L10 #* UO1 ;
24 A11 = (L11\U11) <- lu_fact(Al11l) ;
25 partition
26 / ATL # ATR \
27 | #asRsdasns |
28 \ ABL # ABR / <= / AOO | AO1 # AO02 \
29 [===—mmmmm |
30 | A10 | A11 # A12 |
31 | I
32 \ A20 | A21 # A22 / ;
33 enddo;
34 L =l=A;
35 U =I=4;

Figure 3.2: Computer-readable script for Lazy version of LU factorization

Notice that both Figure 3.3 and Figure 3.4 illustrate the executable form of the Eager
version of the LU decomposition. While both figures correspond to the algorithm presented
in Figure 2.3 (a) on page 27, the latter is not a “vanilla” form of the variant. It is what
I refer to as a wversion of that variant; in this case, the version is only slightly specialized.
This version contains a directive intended to result in data locality in a distributed-memory
computational environment. A discussion regarding the import of such specializations is
delayed until Chapter 4.

o1

Ol LAC U Zyl_i.lbl

www.manaraa.com

has_property unit_lower_triangular ; // (* Permanent Property)
has_property upper_triangular ;
has_property square ;
=== A ; // {Recursive} {Permanent} (* Establish name equivalence %)
=== ; // {Recursive} {Permanent}
partition A => / ATL # ATR \

| R |

\ ABL # ABR / where ATL is 0 by O ;
do until ABR is 0 by O
10 partition / ATL # ATR \
11 | R |
12 \ ABL # ABR /
13 => / AOO # AO1 | AO2 \
14 | SRR R R RS SR SRS |
15 | A10 # A11 | A12 |
16 e — |
17 \ A20 # A21 | A22 /
18 where A1l is nb by nb ; // No larger than is implied
19 A1l (L11\U11) <- 1lu_fact(A11) ;
20 A12 U12 <- L11°-1 * A12 ;
21 A21 L21 <- A21 % U11°-1 ;
22 A22 <- A22 - L21 % U12 ;
23 partition
24 / ATL # ATR \
25 | R |
26 \ ABL # ABR / <= / A0O | AO1 # K02 \

Q= artr

OO0~ Ui WN -

28 | A10 | A11 # A12 |
29 | |
30 \ A20 | A21 # A22 / ;

Figure 3.3: Computer-readable/PLAWright-compilable script for the Eager variant of LU
factorization

92

www.manaraa.com

has_property unit_lower_triangular ; // (* Permanent Property *)
has_property upper_triangular ;
has_property square ; // (* Actually, Square here *)
=== A ; // {Recursive} {Permanent} (* Establish name equivalence *)
=== A ; // {Recursive} {Permanent}
partition A => / ATL # ATR \

| R |

\ ABL # ABR / where ATL is 0 by O ;
do until ABR is 0 by 0O
10 partition / ATL # ATR \
11 | st |
12 \ ABL # ABR /
13 => / AOO # AO1 | AO2 \
14 | SRR RR SRS SRS |
15 | A10 # A11 | A12 |
16 [-==-- #--— - |
17 \ A20 # A21 | A22 /
18 where A1l is local and
19 A11 is locally square and
20 A11 is nb by nb ; // No larger than is implied

arre=ar

OO0~ Ui WhN

22 A1l (L11\U11) <- 1lu_fact(A11) ;

23 A12 = U12 <- L11°-1 % A12 ;

24 A21 = L21 <- A21 * U11°-1 ;

25 A22 <- A22 - L21 % U12 ;

26 partition

27 / ATL # ATR \

28 | ##SR#HRBRRH |

29 \ ABL # ABR / <= / A0O | AO1 # A02 \

31 | A10 | A11 # A12 |
32 | |

33 \ A20 | A21 # A22 / ;
34 enddo;
35 L =I=A;

Figure 3.4: Script for Eager version of parallel LU factorization

93

www.manaraa.com

A=LU

FLAME

Varants

PLAWright

Translator
| A — i

boript Version 0| | | poript Vessim 3\, beript Vession

Figure 3.5: Where PLAWright fits into the “grand scheme” of things.

3.1.4 Where PLAWright Fits In

Let us reconsider Figure 1.1, the “Big Picture” illustrated on page 5 of Chapter 1. While
the FLAME development methodology is systematic, it is not automated. Therefore, there
is something of a cognitive break between FLAME and the remainder of the programming
environment discussed in this dissertation. After the variants are produced by the FLAME
methodology, the process is entirely mechanized. The PLAWright Composer marks the
point of demarcation between systematization and mechanization.

Automation is desirable in this area because it allows the programmer to focus their
efforts on creating algorithms instead of translating these algorithms into code. PLAWright
allows the user to produce versions of the different coding variants (see Figure 3.5, ahead).
The language also serves to enforce some level of programming discipline. This discipline
comes about because the language of the scripts has a syntax that can be expressed in
terms of a context-free-grammar (CFG). In our implementation, the CFG is encoded in the
language of the ANTLR [61, 62] compiler tool.

3.2 Issues

There are a number of considerations that affect the design of a domain-specific language.
The language should capture the central abstractions involved in the domain, retain some
level of flexibility and extensibility, and be of a form that can be automatically translated
into an executable. In this section we discuss these issues.

54

www.manaraa.com

3.2.1 Abstraction

Ease-of-use is an important property in a linear algebra library. Unfortunately, this property
has often been either ignored or relegated to a position of minor importance. On the one
hand, the reason for this is simple and not, entirely, incorrect: performance is important.
People do not use a “friendly” application library for code-development if its performance
characteristics are unacceptably poor. On the other hand, people like to use such program-
ming environments (e.g. MATLAB) for proof-of-concept designs. Therefore, it makes sense
to utilize multiple levels of abstraction in a mathematical library.

Such levels, optimally, present a somewhat unified interface to the library user.
However, it is often the case that different levels in such a library cannot be completely con-
gruent [15] in that they cannot all take the same arguments or argument types. Nonetheless,
it is usually possible to present the user with understandable “variations on a theme” in
these cases if one starts with a systematic approach to the entire library.

Why Level Consistency Is Important

An important component of the systematic approach that enables this consistency between
programming layers lies in the devising of a set of useful abstractions to describe the algo-
rithms under consideration. Selecting the right abstractions gives one the ability to express
algorithms in a compact and understandable manner. Further, it allows for a consistent
vocabulary when discussing algorithms at various levels of detail.

Important Concepts

Because this dissertation largely ignores issues of memory hierarchy until Chapter 5 (see
page 64), it should come as no surprise that there are few general abstractions involved in
designing dense linear algebra algorithms. Only three appear necessary for our purposes.
Object manipulation and (data) component computation are required in the previously
presented algorithms. Object property transformations are somewhat hidden, but are also
necessary. Here, the terms object and component have different meanings. An object
includes both the data component and the other properties of the operand (e.g. size).
The component is the raw data on which mathematical operations are performed. The
manipulation of and computation on objects influences the corresponding properties of those
objects. Thus, one could consider a computation to involve the entire object. The problem
with this view is that the property computations are of a very different nature than the data
computations. Further, the data computations are well understood; while, traditionally, the
property transforms have been either ignored or made almost entirely implicit. Chapter 4,
which deals with automatic code generation (and specialization) presents a case for making
these property transformations explicit.

For a concrete example that involves these issues, let us consider the Eager variant
of LU-decomposition that is illustrated in Figure 3.6:

The entire algorithm relies upon two things:

a5

www.manaraa.com

partition A = < Are | Arg >

Agr, | ABr
where Aryp is 0 x 0
do until Agr is0x0

repartition
A A A
ATL ATR B 00 || 01| 02
A—”A— = Ao || A | Ao
prloen Ao || Aor [An

where Ay is nb by nb
A11 +~ LU fact.(An)
App <« Upp = Lf11A12
Aoy ¢ Loy = Ao U7!
Asy Az — Lo1Ups
continue with

Ao | Ao1 || Aoz
(%“%) = Ao | A1 || A2
BL Il ©BR Ago | Ao1 || Az

enddo

Figure 3.6: Eager approach to LU factorization (paraphrased)

1. How to delimit a block of an operand and
2. The manner in which these operand blocks interact

I think that this figure depicts a natural way to express such an algorithm. However,
as I restrict the programming environment to the ASCII domain, the goal of this work is
to allow the input form to match that illustrated in Figure 3.3. The following sections
demonstrate how this goal can be achieved in an implementation.

Object Manipulation Linear algebra routines typically involve matrices, vectors, and
scalars. The number of operands involved in an algorithm depends upon the algorithm under
consideration. The “nature” of such objects includes their instantiation and individuality.
For example, in the LU decomposition there are conceptually three objects, all matrices,
A, L, and U. A is instantiated (has size, values etc.) when routine begins, while L and
U are not. Also, while we may consider the three matrices to be distinct entities for the
purposes of deriving equations, the algorithms shown in Chapter 2 were composed under
the restriction that I and U overwrote A as the algorithms progressed. This co-location of
data influences the manner in which algorithms are constructed.

These issues motivate all of the object manipulation primitives that are required for
the subset of dense linear algebra algorithms under consideration in this document. The
rest of this section examines the manipulators needed. Although object properties, such
as being lower-triangular, may be affected by both manipulation and computation they

96

www.manaraa.com

are considered a separate abstraction and not as a facet of either the other two nor as an
emergent artifact of their interaction.

The first abstraction needed is co-reference to an existing object. While other ma-
nipulations can be “abused” to yield this operation, our goal here is not the construction
of a minimal set of primitives, but the creation of a small and useful set. The need of this
operation occurs at the very beginning of the LU decomposition algorithm and is related
to the previously discussed co-location property. The LU algorithm begins with a single
matrix, A, that is to be factored into two matrices L and U. Because L and U eventually
occupy the same space as A, the logical thing to do is to view A as sharing components
with L and U.

The next manipulator to be considered is the one that performs (re-)partitioning.
After we have all of the objects that we need to carry out the algorithm, we need to be
able to refer to different subsets of the objects. In the cases presented in this dissertation,
the situation is even simpler, as we wish to be able to “name” only contiguous parts of the
data components of the objects under consideration. Because we may begin with a two-
dimensional matrix and wish to consider a two-dimensional submatrix of the same object,
it seems that two abstractions are required: splitting the object vertically and splitting the
object horizontally. In addition to the direction of the split, the size of the resulting object
would also need to be specified in the realization of this abstraction. Further, if a matrix
can be decomposed through splitting, we should also have the ability to combine parts of a
matrix, or vector, in order to create a new object.

Clarification and Justification There are some unanswered questions regarding the
abstractions given above. Some of these ambiguities involve the issue of co-reference. The
final question concerns the direction of assignment involved in each type of abstraction.

In Figure 3.3 we forced L to co-reference A. This has the same outcome as splitting
A into some number of objects where all but one of the objects has a nil size (0 x 0). While
such a split is valid, there is a drawback to this approach: it does not match the algorithms
as they were presented in Chapter 2. Also, while it is true that the algorithms could be re-
written to use this “zero-split” co-reference, it is our contention that this would be somewhat
less intuitive than the alternative.

Another co-reference ambiguity involves the scope of the operations and conditions.
Consider that we state that L co-refers to (the lower-triangular part of) A. While it does
not arise in the presented algorithm, we may later wish to partition L in one way and A in
another. The language used must provide some way to distinguish between permanent and
temporary co-references. In PLAWright, the syntactic distinction involves the use of === to
indicate a “locked,” recursive equality and == to indicate a temporary equality.

Issues regarding the “direction” of assignments must also be considered. For exam-
ple, if we were to employ A = L notation, it would be apparent that A was being assigned to
L, as L was assumed to be non-instantiated. In order to make the semantics of the language
unambiguous in this regard there are at least three possibilities:

1. Rely on input specifications to indicate which objects are initialized.

57

www.manaraa.com

2. Use positional queues. For example, in C, the line X = Y; unambiguously means that
Y should be assigned to X. or

3. Use operational queues (e.g. Y = X and X < Y would both assign Y to X).

The first option is undesirable because assignment may involve two initialized objects, or,
in the case of an assigment that involved composition, groups of objects. Therefore, we
eliminate the first option from consideration. There seems to be no compelling reason to
favor either of the other two conventions. While the third allows smaller syntactic alterations
to the algorithmic description to disambiguate the meaning of the code, one might reasonably
argue that the second alternative yields cleaner code. In any case, we adopt the third
alternative as the convention in this dissertation and allow = to serve as something of a
comment that can be used as an assertion of operand compatibility.

Computation Only three computational operators are required by the software system
discussed in this document. All three were used in the different example derivations of the
LU decomposition algorithm: multiplication, (triangular) inversion, and addition.

In a linear algebra library, one must expect to perform some form of matriz multi-
plication. This may be a matrix-matrix, a matrix-vector, or a vector-vector multiplication.
For the moment, let us only consider the cases that are well-defined. That is, in the case
where we wish to determine the value of A x B, A is of size m x k and B is of size k X n.
In this case, the primitive used corresponds to the standard matrix-matrix multiplication
algorithm.

There are other cases that must be considered. The first such case arises when the
operation is apparently not well-defined but one of the operands is a scalar (a 1 x 1 matrix).
This operation needs its own semantics to determine if a given calculation is well-defined.
Such an operation is considered well-defined if the objects involved are initialized. The
other cases that must be considered are the result of matrix properties: matrix structure
and transposition status.

A linear algebra object may have many applicable structural specifiers. However,
only upper- and lower-triangular matrices are considered in this document. In both cases,
only part of the matrix is considered to be defined. Operations involving such objects must
never refer to (read or write) the undefined portion of the objects.

Matriz inversion is often required in linear algebra. In the Eager LU decomposition
algorithm presented in this dissertation, it is used to determine A5 where A5 = L1_11A12,
for instance.

As matrix structure has been considered in this section, it should be pointed out
that the matrix inversion required for the LU algorithm(s) presented here is of a restricted
type: the inversion of a triangular matrix. As a practical matter, true inversion would not
be performed due to the special structure of the matrix under consideration. Instead, the
operation would be implemented as a computationally less expensive triangular solve. The
details are unimportant. The situation is highlighted simply because it is an illustration of
the distinction between abstraction and implementation.

98

www.manaraa.com

The last two operators, matriz addition and matriz subtraction, are so similar that,
given the scalar multiplication discussed above, only one is required. However, it is easier
to discuss the algorithms when both are used, so both are included. Both operations are
well-defined when both operands are of equal dimensions and have the same structure.

Property Manipulations While one may think that the concepts of object manipulation
and computation have some overlap, this is not the case in this dissertation. Consider
the preceding sections. Manipulation involved a single data component while computation
referred to object interaction. The barrier between abstraction classes becomes somewhat
more difficult to draw when one considers object properties.

As has been mentioned, properties could be considered as facets of both manipula-
tion and computation. For reasons already discussed, there are benefits to viewing them as
separate entities. However, even with this point-of-view in mind, we must not lose sight of
the fact that both manipulations and computations can affect object properties. Similarly,
properties can affect manipulations and computations.

While there are many potential object properties, we consider only a few. In this
document, there are only two properties that we consider when dealing with objects: size
and shape.

The size property specifies the dimensions of the object under consideration. This
property can be used for a number of things. Most fundamentally, it can be used during
the interaction of two objects to determine if the proposed interaction is well-defined.

Shape properties can be used for the same purpose. Here, we consider only a few
possible shape (perhaps more properly called “constituency”) categories. Among these are:
full, empty, zero, and triangular. Empty is essentially the same as unspecified and the “other
half” of a triangular object is treated as unspecified (uninitialized) during all computational
interactions.

There are also properties that may not be properly attached to any one object.
For example, we have already discussed the idea of a co-reference object manipulation
(i.e. establishing object equivalence). Co-referencing can be viewed as a one- or two-way
relationship. If we view it as a one-way relationship, one object is “secondary” and the
property may be attached to either object. However, if the relationship is considered to be
two-way, there are two choices:

1. The property can be attached to both objects or
2. The objects can be attached to their mutual relationship

We adopt the view that the relationship is two-way and the property is attached to both
objects.

Finally, there is the transposition property to consider. This property indicates
whether an object exists in the transposed state, or if an object is equivalent to the transpose
of a second object (often, a “parent” object). While this may arise from a transposition
operation (a manipulation operation not previously considered), they are different things

precisely because the property can be attached to an object or deleted from that object’s

99

www.manaraa.com

properties regardless of its “true” state. The transposed state changes the applicability of
the computational manipulators in the expected way.

Iterators and Selectors Iteration and selection are required in any mathematical pro-
gramming language. The PLAWright language uses only one iterator :

do until <condition>/enddo.

Similarly, there is only one selector:

if<condition>-then-else,

a construct that resembles the C or Pascal if-then(-else) operator.

In PLAWright, there is a restriction as to what these <condition>s may contain.
As it is now implemented, the condition must be related to the properties mentioned above
(structure and size).

3.2.2 A Domain-Specific Language for Linear Algebra

The language presented in this chapter is intended to mirror the algorithms produced when
employing the FLAME methodology and to allow one to realize, in code, the abstractions
discussed in Section 3.2.1. Largely, it does so successfully, but the disparities between
FLAME and PLAWright deserve a bit of exposition. Similarly, as the previous chapter
maintained that the FLAMBE coding style enabled code and algorithm to be virtually
indistinguishable, the claims made there must be reconsidered.

FLAME vs. PLAWright

In an attempt to allow the novice to create programs with efficiencies that are close to those
produced by an expert, the first step is to allow the novice to program in an environment that
only requires knowledge of standard linear algebra symbols and a few easily-remembered
notational conventions.

Figure 3.3 on page 52 illustrates the simple, “executable” format of the Eager version
of the LU decomposition.

There are few differences between this script and the corresponding algorithm pre-
sented in the previous chapter. The similarity of the two is primarily the result of the
fact that the abstractions were designed around this style of presentation. We would also
maintain that this style of presentation is a “natural” one and, optimally, the code should
conform closely to it. The differences between the two are primarily the result of the fact
that there are a number of implicit assumptions that a human makes or “figures out;” our
compilation system makes no such assumptions.

The most obvious difference is the ASCII-ized nature of the PLAWright language.
This dissimilarity exists because standard compiler technology does not easily lend itself

60

www.manaraa.com

to programming in or interpreting PostScript, the standard form of output for technical
papers.

Another notable difference stems from the need to add certain properties (via anno-
tations) to the co-reference status that needs to be maintained between L, U, and A. While
it is clear that these names are all to initially refer (in some sense) to the same object, it is
not necessarily the case that this property is to be inherited by all named sub-objects (re-
cursive) or that the property is never voided (permanent). Because FLAMBE was written
to respect C and Fortran, this idea of explicit co-reference appeared to be at odds with the
philosophy of the language. The reader may have noticed that an analogous disparity exists
between FLAME and PLAWright, but was not mentioned in Section 3.2.2. In FLAME the
co-reference remains implicit; only in PLAWright does it seem to present itself as a natural
part of the language.

Another disparity involves the addition of “;” (semicolons) to the end of each com-
mand in the PLAWright language. This was done for reasons of expediency; statement
separators tend to make things clearer to translators without having a profound impact on
the readability of the script. They may even make the script somewhat easier to read in
the absence of the formatting imposed on Figure 3.3, as whitespace is unimportant to the
PLAWright-compiler. This practice also tends to allow for the generation of more informa-
tive error messages, since statement and line numbers have unambiguous meaning in this
case.

Finally, the reader may have noted the transposition of = and <- between the algo-
rithms and the scripts. This was done intentionally in order to point out that such things are
often a matter of taste and the compilation system can be altered to suit such differences
with simple symbol (token) renaming. Here, we have taken ease-of-programming a step
further and extended the goal to ease of language extension. Since the implementation of
the language relies upon ANTLR compiler technology, allowing such customization seemed
necessary and proved to be simple to perform.

PLAWright vs. FLAMBE

The PLAWright implementation of Eager LU factorization is depicted in Figure 3.3. This
Figure bears a strong resemblance to Figure 2.3(a). By way of contrast, let us consider
the expression of the eager LU algorithm as expressed using the FLAMBE system as is
seen in Figure 3.7. Great pains have been taken to make the FLAMBE language resemble
FLAME’s language of algorithmic expression. However, the confines of the C programming
language necessitated some of the lexical distance between the two expressive forms. By
adding the appropriate comments, as is done in Figure 3.8, one can make the purpose of
the code more readily evident. However, the use the PLAWright domain-specific language
obviates the need for such comments. The comments in the FLAMBE code (Figure 3.8) are
virtually identical to the corresponding lines in the PLAWright script (Figure 3.3).
Because performance is a consideration, it should be pointed out that the use of such
a script language does not require one to sacrifice their quest for stellar performance. In this
chapter, the manner in which the user can specialize the scripts so as to achieve superior

61

www.manaraa.com

void PLA_LU_eager(PLA_Obj A, int nb);
{

< declarations >

PLA_Create_constants_conf_to(A, &minus_one, NULL, &one);

PLA_Obj_partition_4(A, &ATL, /x*/ &ATR,

/% kkkkkkokkkkkkkk */
&ABL, /*x/ RABR,
/* with */ 0, /* by */ 0, /* submatrix */ PLA_SUBMATRIX_TL);

OO UTULRWN -

10 while (size = PLA_OBJ_GLOBAL_LENGTH(ABR)){

11 b = min(size, nb);

12 PLA_Obj_repartition_4_to_9(ATL, /*%/ ATR, %A00, /*x/ &AO1, &AO2,
13 /% rkokkkkokokkkkk %/ /% kkskokskokskok ok ok kokkokk ok %/
14 /xx/ %A10, /*x/ &A11, &A12,
15 ABL, /*x/ ABR, gA20, /*x/ &A21, &A22,
16 /* with */ b, /* by */ b, /* A1l split from submatrix */ PLA_SUBMATRIX_BR);
17 PLA_LU_level2(A1l);

18 PLA_Trsm(PLA_SIDE_LEFT, PLA_LOWER_TRIANGULAR,

19 PLA_NO_TRANSPOSE, PLA_UNIT_DIAG,

20 one, A1l, A12);

21 PLA_Trsm(PLA_SIDE_RIGHT, PLA_UPPER_TRIANGULAR,

22 PLA_NO_TRANSPOSE, PLA_NONUNIT_DIAG,

23 one, A11, A21);

24 PLA_Gemm(PLA_NO_TRANSPOSE, PLA_NO_TRANSPOSE,

25 minus_one, A21, A12, one, A22);

26 PLA_Obj_continue_with_9_to_4(&ATL, /xx/ &ATR, A00, A01, /*%/ A02,
27 /xx/ A10, A11, /**/ A12,
28 /% rskokokkkkokkokkkokk ok / /% kkskokskokskok ok ok kokkok ok ok %/
29 %ABL, /*%/ %ABR, 420, A21, /%%/ A22,
30 /* with A11 added to submatrix */ PLA_SUBMATRIX_TL);

31 }

32 < cleanup >

33 1%

Figure 3.7: FLAMBE (parallel C version) code for the Eager version of LU factorization

62

www.manaraa.com

OO URRWN -

void PLA_LU_eager(PLA_Obj A, int nb);
{

< declarations >

PLA_Create_constants_conf_to(A, &minus_one, NULL, &one);

PLA_Obj_partition_4(A, &ATL, /**/ &ATR,

/% skskokoskoskokskokskokskok sk ok % /
&ABL, /*x/ RABR,
/* with */ 0, /* by */ 0, /* submatrix */ PLA_SUBMATRIX_TL);

while (size = PLA_OBJ_GLOBAL_LENGTH(ABR)){
b = min(size, nb); /* Determine block size b
PLA_Obj_repartition_4_to_9(ATL, /*x/ ATR, %A00, /*x/ &A01, &AO2,
/% rkokokkkokokkkkk %/ /% okokkskskokkokkokokokkokkokok &/
/*x/ %A10, /*x/ &A11, &A12,
ABL, /*%/ ABR, %A20, /*x/ &A21, &A22,
/% with */ b, /* by */ b, /* A1l split from submatrix %/ PLA_SUBMATRIX_BR);
PLA_LU_level2(A1l); /* A11 <= L\U11 = LU fact(A11)

PLA_Trsm(PLA_SIDE_LEFT, PLA_LOWER_TRIANGULAR, /* A12 <= U12 = inv(L11) * A12
PLA_NO_TRANSPOSE, PLA_UNIT_DIAG,
one, A11, A12);

PLA_Trsm(PLA_SIDE_RIGHT, PLA_UPPER_TRIANGULAR, /* A21 <= L21 = A21 % inv(U11)
PLA_NO_TRANSPOSE, PLA_NONUNIT_DIAG,

one, A11, A21);
PLA_Gemm(PLA_NO_TRANSPOSE, PLA_NO_TRANSPOSE, /* A22 <- A22 - A21 x* A12
minus_one, A21, A12, one, A22);
PLA_Obj_continue_with_9_to_4(&ATL, /#*/ &ATR, A00, AO1, /*x/ AO2,
/*x/ A10, A11, /*%/ A12,
/% kkkkkkkokkkkkkk x/ /% kkskokkkkkokkokkkokkkkk ok /
&ABL, /**/ &ABR, A20, A21, /*x/ A22,
/* with A11 added to submatrix */ PLA_SUBMATRIX_TL);
}
< cleanup >

}

*/

*/
*/

*/

Figure 3.8: Commented FLAMBE (parallel C version) code for the Eager version of LU
factorization

63

www.manaraa.com

performance is addressed, while the discussion regarding the effects of these specializations
will be largely delayed until Chapter 5.

3.2.3 Parallel Specializations and Extensions

Thus far, details regarding computational environments have been largely glossed over.
The different approaches were described in a manner that avoided any real consideration
of a computational environment even if the text occasionally used the term “sequential”
to supply a basis for communication. While this is appropriate if one wishes to treat the
presented derivation methods as useful educational tools, it falls short if one wishes to bring
these ideas to fruition in the real world.

To realize the presented algorithms and to implement the primitives discussed
thus far is a straightforward task if the developer is restricted to the monolithic memory
model [60]. However, to extend the algorithms so that they are efficient in a distributed-
memory system requires more work.

This subsection presents a number of issues that only arise in the parallel architec-
tural arena and show that few changes are required to extend the algorithms and abstractions
already presented so as to comply with the restrictions and requirements imposed by this
model.

Why Specialization Is Important

When one shifts one’s focus from the abstract environment of algorithmic derivation to that
of implementation, a number of issues arise. In the arena of linear algebra algorithms, these
concerns can largely be pared down to one: memory hierarchy considerations. For exam-
ple, in the parallel architecture case there are two basic programming paradigms (models):
shared-memory and distributed-memory. In this document the focus is on an approach
that was designed with distributed-memory machines in mind, but with the ability to treat
the underlying architecture as if it were based on the shared-memory model. The reason
for this approach is simple; it is desirable to accommodate both models and, since the
shared-memory model offers much less control than the distributed model, using a strictly
shared-memory model would prove sub-optimal from a performance point-of-view [75].

The primary advantage of the shared-memory model is programming ease. Most of
the examples in this dissertation, and all those presented thus far, could remain unchanged
if they were to be implemented on a shared-memory machine. The reason for this is simple;
shared-memory models treat a computational system, whether it has non-uniform memory
architecture (NUMA) characteristics or not, as if it were a “UMA” architecture. Unfortu-
nately, ignoring the NUMA nature of a system can result in sub-optimal performance. By
layering the abstractions and the library derived from those abstractions so as to ease tran-
sition from a shared view to a distributed view, the user is allowed to trade convenience for
performance in a flexible manner. In Chapter 5 we demonstrate how this design philosophy
also allows for the implementation of a (simple) performance analyzer that can dynamically
analyze the trade-offs as the user transitions between approaches.

64

www.manaraa.com

Writing Parallel Algorithms

There are two ways to view the construction of parallel algorithms in this setting. For
simplicity, let us call them “hands-off” and “hands-on.” Both philosophies have potential
advantages ... and disadvantages.

The hands-off approach is to rely upon the underlying computational environment
to deal with issues related to parallelism. This, of course, requires that the underlying
code translation and instantiation mechanism be capable of treating the computational
environment as a shared-memory system. Figure 3.9 shows how the code for the parallel
version of Eager LU decomposition might appear in such a script.

1 L has_property unit_lower_triangular ; // (* Permanent Property *)
2 U has_property upper_triangular ;
3 A has_property square ; // (* Actually, Square here *)
4 L === A ; // {Recursive} {Permanent} (* Establish name equivalence *)
5 U === ; // {Recursive} {Permanent}
6 partition A => / ATL # ATR \
7 | SRR |
8 \ ABL # ABR / where ATL is 0 by O ;
9 do until ABR is 0 by O
10 partition / ATL # ATR \
11 | ### RS |
12 \ ABL # ABR /
13 => / AOO # AO1 | AO2 \
14 | SRR RR B SRS R S |
15 | A10 # A11 | A12 |
16 [===-- #-—mmm - |
17 \ A20 # A21 | A22 /
18 where A1l is local and
19 A11 is locally square and
20 A11 is nb by nb ; // No larger than is implied
21
22 A11 = (L11\U11) <- lu_fact(A11l) ;
23 A12 = U12 <- L11°-1 * A12 ;
24 A21 = L21 <- A21 * U11~-1 ;
25 A22 <- A22 - L21 % U12
26 partition
27 / ATL # ATR \
28 | ## RS |
29 \ ABL # ABR / <= / A00 | AO01 # 402 \
30 [===mmmmm |
31 | A10 | A11 # A12 |
32 | I
33 \ A20 | A21 # A22 / ;
34 enddo;
35 L =!=A;
36 U =!=A;

Figure 3.9: Script for Eager version of parallel LU factorization (hands-off)

Notice that there are two very different contexts in which this script may be used. The first is a true
shared-memory environment in which the underlying hardware provides the support that would allow for a
simple line-by-line translation of this code to function as it should. The other case involves mapping onto

65

www.manaraa.com

Ol LAC U Zyl_ﬂbl

a machine whose memory is distributed. While the first case is rather uninteresting from the perspective
of the work to be presented here, consideration of the second case brings up a number of issues that merit
further examination.

Here again, we have something of a strategy bifurcation. The user may either handle the issues that
arise “by hand” or they can suppose that an underlying library, coupled with the script translator, provides
the required support. The former option requires a less sophisticated library, a simpler script translator,
and seems to hold out the promise of more complete code modularity while the latter would seem to provide
a framework for simpler coding. There are a number of issues to be dealt with if the automated code
generation system is to work on a distributed machine. In the following sections, we discuss some of these
issues and, in the end, construct an LU decomposition algorithm that, while explicitly dealing with the
issues involved, does not take on the kind of apparent additional complexity that is traditionally associated
with converting an algorithm to a distributed-memory model.

Impact On Abstraction

Let us assume that the SUMMA [73] approach to the implementation of the computational components
of these algorithms is the one employed. This approach involves the application of a series of parallel,
blocked operations. Using SUMMA, a parallel matrix-multiplication consists of a series of panel-panel
(outer-product), matrix-panel (a matrix multiplied by many vectors), or panel-matrix multiplications. The
use of SUMMA implies that two other abstractions are required if one does not wish to adopt the “hands-off”
stance discussed in the previous section. We refer to these abstractions as duplication and consolidation.

It may appear difficult to determine whether these operations are more properly referred to as
manipulations or computations. However, as we defined computations to encompass any operation that
involves more than one data object, by definition both abstractions fall into that category. Duplication
involves duplicating part of a data object. That is, copying the data from one object into the data component
of some other object(s). Consolidation (often referred to as “reduction”) is the converse of this relationship.
It involves applying a function (in Fig. 3.9, addition) to some set of objects that may be distributed across
the grid and copying the result into another object.

Revisions For Performance

While generating efficient, parallel code from a script is useful, it may be that the code generation system
user feels too far removed from the implementation. Sometimes this distance is desired, as in the case of a
user who has neither the desire nor the expertise to avail himself of the “deeper” aspects of the programming
environment; but often, it is not.

A common mistake that this code generation system avoids is the permanent hiding of parallelism
and other details. By allowing the user to address the underlying architectural system at different levels of
granularity, superb performance and simplicity can be achieved with a reasonably consistent programming
“look and feel.” This approach would seem to be the natural extension of the belief that computational
abilities (such as parallelism) should not be hidden even though we may wish to conceal how they operate [8,
75].

To illustrate the manner in which such revisions might appear in a script language, we present
Figure 3.10. A few remarks about some of the notation used in this “hands on” script are probably called
for. The use of the “Local” functional notation is intended to impose the requirement that the enclosed
operation does not involve any interprocessor communication. The other two, somewhat cryptic, notations
|* and -* indicate “all processor columns” and “all processor rows,” respectively.

As can be seen in Chapter 5, there are many things that can be determined and used
to advantage if the input is more specific than a mathematical description of the problem at
hand. In the case where such additional information is withheld from the analysis engine,
certain defaults are assumed. However, there is no guarantee that the default values are a
good approximation to those of the problem under consideration. It would be very difficult to

66

www.manaraa.com

L A ; // {Recursive} {Permanent} (* Establish name equivalence *)
U === A ; // {Recursive} {Permanent}

L has_property unit_lower_triangular ; // (* Permanent Property *)

U

A

has_property upper_triangular ;
has_property square ; // (* Actually, Square here *)
partition A => / ATL # ATR \
| asRsdasss |
\ ABL # ABR / where ATL is 0 by O ;
do until ABR is 0 by O

HO OO Uk WwWwN -

1 partition / ATL # ATR \

1 | #EfRHHHERRE |

12 \ ABL # ABR /

13 => / AOO # AO1 | AO2 \
14 Eizziizszziissssidl
15 | A10 # A11 | A12 |
16 [===-- #o-—m oo |
17 \ A20 # A21 | A22 /
18 where A1l is local and

19 A11 is locally square and

20 A11 is nb by nb ; // No larger than is really implied
21

22 function_override ("PLALul");

23 A11 = (L11\U11) <- lu_fact(A11l) ;

24 Lower[L11tri] |* <- Lower[L11] ;

25 A12 = U12 .<- Lower[L1iltri]~-1 * A12 ;

26 Ulltri -* <- Upper[U11] ;

27 A21 = L21 .<- A21 * Upper[Ulitril~-1 ;

28 L21col |* <- L21 ;

29 Ul2row -* <- U12 ;

30 A22 .<- A22 - L21icol * Ul2row ;

31 partition

32 / ATL # ATR \

33 | ##SH#H RS RS |

34 \ ABL # ABR / <= / A0O | AO1 # A02 \
35 [== e |
36 | A10 | A11 # A12 |
37 | |
38 \ A20 | A21 # A22 / ;
39 enddo;

Figure 3.10: Script for Eager version of parallel LU factorization

67

www.manaraa.com

provide such assurances, as the same implementation must work with different mathematical
objects and on different computational grids.
The information that can be communicated via the PLAWright annotations includes:

The absolute or relative object sizes

e Known constraints or preferences (maximum memory consumed)

Target architecture or hardware system specifics (per processor or for entire machine)

Minimum /Maximum /Specific grid size and topology to be used

That the data will be distributed in some particular manner

The form of results that are expected from static analysis (see Chapter 5 for options).

3.3 Related Work

Since the work in this chapter considers abstraction in the light of both library construction
and programming environment, work related to each topic is discussed.

3.3.1 Library-Based Abstractions

The first issue that should be dealt with is the use of the term environment as it applies
to a library. We posit that a library qualifies as an environment, or “framework” if the
reader prefers, because it implicitly imposes a set of concepts on the user. These concepts
are expected to be appropriate for the problem at hand and capable as acting as guides for
the user.

Libraries are a means to “export” the expertise of some set of people so that it is
available to a second set of individuals. Often it is the case that this second set lacks some,
or all, of the area-specific expertise of the first group. Most usually the library is considered
to be at a “lower-level” than the applications which use it. However, this is not always the
case.

Consider the fact that a library can be distributed in at least two forms [57, 54]. The
first is the more traditional: computer-language (source or machine) code. The second is in
the form of an algorithmic description of the process of concern. This latter form provides
an unrealized (potentially high-level) functionality set that imposes fewer restrictions, but
supplies the same framework as a coded library.

Two well-known examples of traditional linear algebra libraries are LINPACK [22]
and LAPACK [5]. Both libraries are built around an index-based scheme combined with a
set of general computational kernels. LINPACK, predating LAPACK, utilizes a subset of the
kernels exploited by LAPACK. Whereas LINPACK uses only Level-1 BLAS (vector-vector)
operations, LAPACK uses all three levels of the BLAS.

While a paper or template [10] library does not provide an application program-
ming interface (API), it does provide, in many cases, a “plan of attack” for implementing

68

www.manaraa.com

a software system and a foundation for creating an API (modulo programming language
constraints).

3.3.2 Programming Environments

Two well-known examples of modern programming environments are the Mathematica [77,
35] and MATLAB [58] programming packages. Both supply the user with a vast array of
functions for computation and visualization as well as a rudimentary integrated debugging
system. Additionally, both provide a huge assortment of library routines and their own
programming language with which to call them. Further, both supply interface routines
and documented specifications so that the user is allowed to link in routines written in
other more traditional languages, such as C or Fortran.

Although Mathematica and MATLAB are examples of environments, they are, in
many ways, atypical of such packages, though probably typical of the direction in which
these products are moving. While motivations of a commercial nature may keep the source
code of these newer systems under wraps for the near future, these products allow the user
to plug-in their own modules. *

Older software systems tended to be monolithic and, as they did not produce code,
plugging in user-defined modules was difficult. Newer packages take a two-tiered approach:
those users who wish to continue to view functions as black-boxes are free to do so, while
those who want to look inside are given the ability to do so.

3.4 Chapter Summary

In this chapter, we have presented a language that allows the algorithm designer to spe-
cialize their operations. Specifically, we have seen that the user is free to manipulate the
distribution of data across the computational grid as he sees fit. Such freedom is desirable
from a performance-based point-of-view, but it is necessary from a flexibility standpoint. If
this multi-layered approach is abandoned, the lack of a particular library module may imply
that the algorithm designer is engaging in a futile effort. Just as in the sequential case, it is
vital that the user have the tools needed to construct novel algorithms.

In Chapter 4 we demonstrate that different script variants result in the production
of different code instances, as one would expect. In that same chapter, we describe how this
occurs and why it is often beneficial. While Chapter 4 also contains a discussion related to
script versions and the differences in the code corresponding to those versions, much of the
discussion regarding the importance of this feature is delayed until issues of performance
are considered in Chapter 5.

IMATLAB supplies, at an added cost, the ability to compile their code into a more efficient executable.

69

www.manaraa.com

Chapter 4

Automated Code Generation

Implementation tweaking is a standard part of the process when one is developing high-
performance scientific applications intended to run on parallel architectures. In this area
of research, algorithmic restructuring and code-level optimizations have traditionally been
done by different groups [32]. Unfortunately, information that could be employed to make
code more efficient is traditionally obscured in the translation from a high-level description
into low-level code. Allowing the user to code in a domain-specific language such that high-
level information is retained while automatically coupling the requirements to low-level
routines would allow for both high- and low-level optimizations. The work presented in this
chapter allows one to perform precisely this activity. That is, to generate code instances
with high-performance characteristics while programming at a very high level.

For an overview of the automated segment of the process described in this disserta-
tion, the reader is instructed to refer to the illustration in Figure 3.1. There, the high-level
program (expressed in PLAWright) is translated into a series of PLAPACK library calls.

The transformation process depends on the specifics of both the target library and
the computational environment. Thus, the library routines in the target library are anno-
tated with the following in order to create the corresponding annotated library:

e Their semantics, which indicate what linear algebra operation is performed (i.e. service
provided).

e Guards, which indicate the conditions under which the library call is well-defined.

e Performance characteristics, which are used to generate automated analysis.

The PLANALYZER uses the semantics and guards of the library routines in order
to generate a number of implementations whose functionality corresponds to the input script
version. This process is the focus of this chapter as is indicated in Figure 4.1. While this
chapter largely ignores performance considerations, the next chapter focuses on the issue
of performance characteristics, so the reader with such concerns need not worry that they
have been entirely overlooked.

70

www.manaraa.com

A=1LU
Vanants FLAME]‘ll,d

5 |
LPLAWright J
¥ ———— ¥
beript Version 0| | Beript Version 1 AT Beript Version n
'\.‘\‘ !-\.‘.'__\1‘ e
Compiler Compiler
Codel [Codel Coden

Figure 4.1: Where the code generator fits into the “grand scheme” of things.

4.1 Motivation for Automating Library Linkage

There are many reasons that one might wish to automate library linkage. In Chapter 3,
the PLAWright script language was presented. In that chapter, the focus was on the fact
that the language provided for the efficient utilization of the expertise of the programmer.
It was also pointed out that the scripts could be compiled and the resulting codes were
computationally efficient. By automating library linkage, one can write a single exemplar
code (script) that compiles into many different code realizations.

This practice also facilitates the leveraging of the expert’s knowledge via a separation
of concerns. The application writer can concentrate on the picture as he sees it and rely
on the fact that the library writer provides efficient routines and that those routines are
linked to at the time of compilation. The library writer might have a similar relationship
with the kernel writer. All of these users could be “communicating” their work through
the annotations they add to their contributed routines and allowing the compilation system
to find a match between what they require (as is expressed in the script) and what the
library provides (as is communicated in the associated annotation). Thus, the automated
system represents an potential extension to what is often-sought in this relationship among
programmers. In the next chapter, we discuss how high performance is achieved. Here, we
assume that efficient routines are linked to the user’s requests.

Portability can be as important as performance in the domain of dense linear algebra

71

www.manaraa.com

libraries. Not only do companies come and go, but vastly different architectural designs may
be created and tested. Sometimes this testing occurs in the marketplace and sometimes it
transpires in research facilities, but the shakeout that determines what lasts and what does
not, will continue to happen as long as resources are finite. The core difficulty here is how to
design a code generation system or systematize an approach such that the result is amenable
to both evolutionary (e.g. Cray T3D — Cray T3E) and revolutionary (e.g. Intel Paragon
— LEGION — Blue Gene) changes.

It would seem that adapting to changes that are, as measured by performance met-
rics, orders of magnitude apart would best be supported by two distinct approaches [3],
one emphasizing ease-of-use, and the other concentrating solely on achieved performance.
However, it is our thesis that one should moderate, at times, the (laudable) goal of “a sepa-
ration of concerns.” One must determine when concerns are identical or largely overlapping
(i.e., to decide if and when these concerns are the same when viewed from a given level of
abstraction).

The scripts corresponding to the Eager and Lazy versions of LU factorization (de-
picted in Figures 4.2 and 4.3, respectively) are in a form that might be termed user-friendly.
However, the user may wish to give directives to the code generation system. These di-
rectives might involve object distribution, block sizes, or specifying the name of a specific
library routine. In this chapter we address the impact of these “hints” on code produc-
tion. For example, if one were to specialize Figure 4.2 by providing such hints, the result
might well be Figure 4.4 (seen previously in Figure 3.10). Note that lines 22 and 24-30
in Figure 4.4 are all user-supplied hints related to function selection (24) or distribution
specification (24-30).

4.2 Issues in Library Linkage

The issues that one must consider when designing, in the abstract, an automated library-
linkage system are mirrored when one’s focus shifts to an implementation. This section
restricts itself to issues that apply to the abstract case while the next section deals with
each issue in the context of a proof-of-concept implementation. The manner in which the
process of linking takes place is delayed until Section 4.3 because communication regarding
that subject benefits from the existence of concrete examples.

4.2.1 A (Fictitious) Linking Library

There are many ways in which any scientific software library can be constructed. We
restrict our attention to theoretical constructs that lie at opposite ends of the spectrum of
possibilities and consider issues germane to the use of a script language such as PLAWright.

First, there is the possibility that the library contains a great many subroutines.
So many, in fact, that there is always at least one subroutine that matches the feature
requirements of any operation requested (see Section 4.2.2) by a script statement. At the
other end of the scale, there is the possibility that the library consists of few routines, but

72

www.manaraa.com

has_property unit_lower_triangular ; // (* Permanent Property *)
has_property upper_triangular ;
has_property square ; // (* Actually, Square here *)
=== A ; // {Recursive} {Permanent} (* Establish name equivalence *)
=== A ; // {Recursive} {Permanent}
partition A => / ATL # ATR \

| R |

\ ABL # ABR / where ATL is 0 by O ;
do until ABR is 0 by 0O
10 partition / ATL # ATR \
11 | st |
12 \ ABL # ABR /
13 => / AOO # AO1 | AO2 \
14 | SRR RR SRS SRS |
15 | A10 # A11 | A12 |
16 [-==-- #--— - |
17 \ A20 # A21 | A22 /
18 where A1l is local and
19 A11 is locally square and
20 A11 is nb by nb ; // No larger than is implied

arre=ar

OO0~ Ui WhN

22 A1l (L11\U11) <- 1lu_fact(A11) ;

23 A12 = U12 <- L11°-1 % A12 ;

24 A21 = L21 <- A21 * U11°-1 ;

25 A22 <- A22 - L21 % U12 ;

26 partition

27 / ATL # ATR \

28 | ##SR#HRBRRH |

29 \ ABL # ABR / <= / A0O | AO1 # A02 \

31 | A10 | A11 # A12 |
32 | |
33 \ A20 | A21 # A22 / ;
34 enddo;

35 L =I=A;

36 U == A;

Figure 4.2: Computer-readable Script for Eager version of LU factorization

73

www.manaraa.com

has_property unit_lower_triangular ; // (* Permanent Property *)
has_property upper_triangular ; // (% Same as non-unit *)
has_property square ; // (* Actually, Square here *)
=== A ; // {Recursive} {Permanent} (* Establish name equivalence %)
=== A ; // {Recursive} {Permanent}
partition A => / ATL # ATR \

| s |

\ ABL # ABR / where ATL is 0 by O ;
do until ABR is 0 by 0O

are=ar

HO OO Utk WwN -

1 partition / ATL # ATR \

1 [E:2:22:2:252:52 23]

12 \ ABL # ABR /

13 => / AOO # AO1 | AO2 \
14 E:2:22255 2802002002
15 | A10 # A11 | A12 |
16 [-=—-- R b |
17 \ A20 # A21 | A22 /
18 where A1l is local and

19 A11 is locally square and

20 A11 is nb by nb ; // No larger than is implied
21 A01 = UO1 <- LOO"-1 * AO1 ;

22 A10 = L10 <- A10 * U00O~-1

23 A11 = (L11\U11) <- A11 - L10 * U01 ;

24 A11 = (L11\U11) <- lu_fact(All) ;

25 partition

26 / ATL # ATR \

27 [t |

28 \ ABL # ABR / <= / A0 | AO1 # A02 \
29 [=== I
30 | A10 | A11 # A12 |
31 | I
32 \ A20 | A21 # A22 / ;
33 enddo;

34 L =l= A

35 U =!=A;

Figure 4.3: Computer-readable script for Lazy version of LU factorization

74

www.manaraa.com

L A ; // {Recursive} {Permanent} (* Establish name equivalence *)
U === A ; // {Recursive} {Permanent}

L has_property unit_lower_triangular ; // (* Permanent Property *)

U

A

has_property upper_triangular ;
has_property square ; // (* Actually, Square here *)
partition A => / ATL # ATR \
| asRsdasss |
\ ABL # ABR / where ATL is 0 by O ;
do until ABR is 0 by O

HO OO Uk WwWwN -

1 partition / ATL # ATR \

1 | #EfRHHHERRE |

12 \ ABL # ABR /

13 => / AOO # AO1 | AO2 \
14 Eizziizszziissssidl
15 | A10 # A11 | A12 |
16 [===-- #o-—m oo |
17 \ A20 # A21 | A22 /
18 where A1l is local and

19 A11 is locally square and

20 A11 is nb by nb ; // No larger than is really implied
21

22 function_override ("PLALul");

23 A11 = (L11\U11) <- lu_fact(A11l) ;

24 Lower[L11tri] |* <- Lower[L11] ;

25 A12 = U12 .<- Lower[L1iltri]~-1 * A12 ;

26 Ulltri -* <- Upper[U11] ;

27 A21 = L21 .<- A21 * Upper[Ulitril~-1 ;

28 L21col |* <- L21 ;

29 Ul2row -* <- U12 ;

30 A22 .<- A22 - L21icol * Ul2row ;

31 partition

32 / ATL # ATR \

33 | ##fR#HBBR RS |

34 \ ABL # ABR / <= / A0O | AO1 # A02 \
35 [== e |
36 | A10 | A11 # A12 |
37 | |
38 \ A20 | A21 # A22 / ;
39 enddo;

Figure 4.4: Annotated script for an Eager version of parallel LU factorization

75

www.manaraa.com

routines from which one could construct an algorithm matching the semantic requirements
of any legal script statement.

Either of these libraries can be used in an automated code generation system. Deter-
mining which one is “best” would seem to be a philosophical, not scientific, issue. Certainly,
in the large library case, matching the requirements of the script to the functionality pro-
vided by the library is simpler. The matching can be both 1:1 on a line-by-line basis and
purely syntactic in the first case. Further, if the underlying library is optimized, the opera-
tions corresponding to these matches is almost always the best choices from a performance
perspective. In the small library case, the matching procedure is more complex, as it has
the responsibility of building programs from components.

For the purposes of this dissertation, we focus on a library that lies somewhere in
the middle. This is justified for the following reasons. First, if the large, efficient library is
considered the target, the work involved in the binding process is not very interesting. In
that case, matching is simple and, while automated performance analysis (see Chapter 5)
might be interesting, it is not necessary, as the highest degree of available efficiency is
virtually assured simply by dint of the “brains” in (or behind) the library. Second, the
case of the building-block library has an unfortunate stopping point, namely the constructs
in the language of output. Since the idea of generating optimized assembly language from
a high-level script language would appear to be too ambitious for any single dissertation,
a middle ground was selected. In any case, expertise is required. For the large library, a
great deal of expertise would be needed to construct the annotations, while in the building-
block library case, the greater expertise would be required to transform the input to a list
of library-matchable requirements. Finally, the PLAPACK library was targeted because it
is an implementation of the layered approach advocated in this document and has good
performance characteristics.

4.2.2 Reducing a Script

The algorithm expressed in script form is to be realized through the functionality of a library,
thus the requirements of the script must be mated to that library. One could match the
requirements directly, if they were to assume the “large” version of the library described in
Section 4.2.1. However, that section clarifies why the use of such a library is not employed
in this work. Thus, we assume that some form of reduction to requirements must take place.

The question then becomes one of determining the language into which these require-
ments are translated. This determination has been largely dictated to us by the abstractions
behind the language itself. In Section 3.2.1, details about the necessary abstractions under-
lying the PLAWright language were given. It would seem certain that the language form
we employ to express the script requirements must have the ability to express those ab-
stractions. Certainly, though it is not strictly necessary, it can also prove beneficial if this
“down-translation” (from script to requirements) is capable of producing script-induced-
requirements that express higher-level needs. It is often advantageous to stay as close as
possible to the application (and the application language) so as not to lose information.
Therefore, we deem it beneficial for any such code generator to have the ability to translate

76

www.manaraa.com

down to various levels of feature abstractions so that it can match the library at the highest
level possible. Alternatively, translation could occur in a step-wise fashion, where library
functionalities are matched at the highest level available and further refinement (down-
translation) performed on a need-driven basis. As can be seen in the implementational
arena (Section 4.3.3), the former approach was selected strictly for reasons of expediency.

4.2.3 Annotating a Library

It might appear that the questions regarding the form of the language used to annotate the
library have already been answered. Section 4.2.2 supplied details about how the abstract
down-translation is to occur, and it seems logical to assume that the library annotations
are to match that language if a binding is to occur. Unsurprisingly, here, we do make that
assumption. Surprisingly, this is not the end of the subsection.

It would seem that we are still left with some choices about the language we wish
to use in order to annotate our fictitious library. We could:

1. Use the target language of the script requirements (lowest level).

2. Employ PLAWright to annotate the library and the script translation engine to “di-
gest” those annotations.

3. Exploit a combination of the first two ideas.

We utilize the third option. However, for purposes of exposition, a mid-level format is used
to illustrate the realization of these annotations.

4.2.4 Producing Output

The kind of output produced has largely been determined by the methodological approach we
have assumed: the use of some existing library or libraries. Since interoperability concerns
are outside the scope of the research completed, we have restricted ourselves to a single
computer language. Further, because the existing scientific libraries are usually written
in an imperative language, most often C or Fortran, we restrict our attention to those
languages.

4.3 Implementation: An Automated Library

The software system depends on matching script requirements to the library functionality.
Thus, it avoids having to handle many of the difficulties involved when one deals with novel
architectures by relying on a library expert. This expert is expected to provide the (PLAN-
ALYZER) system with correct (functionality and performance) annotations. Further, it is
expected that the routines to be “mined” evince superb performance characteristics.
Those disclaimers aside, not all is lost. In the discussion of Section 4.2.1 regarding
the design of a fictitious library, it was pointed out that the code generator can compose

7

www.manaraa.com

a fairly small number of primitive operations to implement an algorithm. This removes a
good deal of the burden from the shoulders of the library expert as that individual can be
supplied with a short list of annotated and optimized functions which must be provided.
While it is still true that the expert may have to do some work for this to be achieved, the
burden is decidedly eased when compared to traditional library building methods. In those
cases, supplying the kernel routines was the first of many steps; here, it marks the shift into
a far more automatic method of development.

4.3.1 Tools Employed

In order to allow automated binding to an annotated library, a number of software tools
were used. The first step in the chain of execution is the ANTLR [61, 62] compiler-compiler.
Given PLAWright code, ANTLR was used to compile the scripted input into a functional
programming form that was syntactically well-formed Mathematica input code. At that
point in the process, Mathematica [77] is utilized in order to perform the pattern-matching
necessary to combine the requirements of the program with the functionality provided by
the (annotated) library, and to translate this intermediate form into an executable largely
composed of calls to the target library.

4.3.2 PLAPACK: A Target Library

When coupling a script to a library, it is beneficial for the library to be constructed in
accordance with the same design philosophy reflected in the script language. PLAPACK is
well-suited to this goal, due to its layered structure. Figure 4.5 illustrates the PLAPACK
library’s layered nature and meshes nicely with this design goal.

PLAPACK Application Layers

User Application application layer
A{iﬂgf,’;’ SN fibrary layer
Interface PLA Global BLAS

(PLAAPD) | PLA_CopylRedice | l,]‘gﬁp"ﬁ?fgfm | PLA Local BLAS | - PLAPACK absiraction layer

MMPI Bt PLA malloc PBMD PLA/BLAS | ypachine/distribution independent layer

interface Templates interface |
: cartesian s g m =
Message-Passing Interface malloc distributions | Yendor BLAS | machine/distribution specific layer

Figure 4.5: The layered structure of the PLAPACK library

Very briefly, the layering allows the naive user to program at a very high level, so as
to interact strictly with high-level global routines and the shared-memory view afforded by
the use of the (poorly named) “API” routines. The more expert user may exercise greater

78

www.manaraa.com

control of the process by utilizing the lower levels of the library. This allows the application
programmer to create a working proof-of-concept algorithm, and then to iteratively refine
it in order to maximize performance [2]. The work presented here further eases this process
by automating optimizations and allowing the user to program at an even higher level of
abstraction if he so chooses and to spend more of their energy on algorithmic, rather than
programming, refinement.

4.3.3 Compiling PLAWright

The compilation of a PLAWright script is most easily thought of in terms of rewrite rules,
syntax-based tranformations. One form of the implementation uses a simple table of rewrite
rules in order to perform this translation. As that is an approach that lends itself to
exposition, that implementation is the one that is studied in this section.

Consider line 25 in Figure 4.2.

A22 <- A22 - L21 * U12 ;

After the stage of compilation handled by the ANTLR compiler tool has been performed,
the intermediate form of the program is in a format that can be parsed by Mathematica.
The ANTLR tool also determines if the script is syntactically correct, but the Mathematica
engine is responsible for determining whether or not the script can be transformed into an
executable program and, if so, how.

When this line of code enters Mathematica it has the following form:

AssignTo[A22, PLAMinus [A22, PLATimes[L21, U12]]1]

which is transformed, by default, into:

AssignTo[A22, PLAPlus [A22, PLATimes[-1, L21, U12]]]

The code generator explores many paths of translation. Let us consider one of the
eventual targets of this translation:

PLAGemm[transa_, transb_, alpha_, A_, B_, beta_, C_]

We can ignore the transx_ parameters, as the details might prove distracting. In order
to arrive at this format, the initial form must be transformed into one that matches the
PLAGemm[] call. The following line illustrates the format that must be matched (the checks
of object types that are included in the rewriter are omitted for brevity). The following line
is intended to capture the features of the PLA_Gemm() library function, but the description
is divorced from that particular implementation.

79

www.manaraa.com

AssignTo[C1_,PLAPlus[PLATimes[alpha_, A_, B_],
PLATimes[beta_, C2_ 111

A few topics need to be dealt with here. The first involves the fact that C1_ and
C2_ both match A22. This is allowable in unification as two variables can match the same
object. The second requires only slightly more explanation. Barring explicit user directives
to the contrary, the rewriting system can change the order of the objects involved in an
addition operation. Therefore,

PLAPlus[A22, PLATimes[-1, L21, U12]]

becomes

PLAPlus[PLATimes[-1, L21, U12], A22]

in one search chain. The third and final issue involves the multiplication by scalars. The
operation to be matched includes alpha_ and beta. terms that are not in the original
operation. This can be handled in at least two ways. One solution is to default values to the
operations (in the case that no scalar is supplied). Alternatively, one could build knowledge
into the rewriter (e.g., that multiplication by 1 results in an object with unchanged values).
The second option was utilized in the engine for reasons of expediency, but this will likely
be changed in the future, as dealing with such things using a demand-driven approach tends
to be more computationally efficient.
Given that the PLANALYZER eventually matches:

PLAGemm[transa_, transb_, alpha_, A_, B_, beta_, C_]

all that is left is the output of code. This is a simple step involving a simple Expression[]
to String[] rewrite inside Mathematica resulting in the output:
PLA_Gemm(PLA_NO_TRANS, PLA_NO_TRANS, mscalarnegone, L21, Ul2, mscalarone, A22);

4.3.4 Annotating the Library: Functionality Provided

To apply any operation, the preconditions of that operation must be met in order for the
semantics of the operation to be well-defined. Therefore, tests are applied in order to
determine if the function is applicable to the “current state” of the program, as seen through
the eyes of the code-generation mechanism. In order to advance the state of the program,
the applicable and required operations are applied to the current state.

Pre-Conditions: Guards

Consider a simple example consisting of the following one-line high-level program.

80

www.manaraa.com

A <~ A x C;

The PLANALYZER attempts to match this with the PLAPACK library’s functionality and
after some analysis identifies the following call as a possible match.

AssignTo[A, PLAPlus[PLATimes[mscalarone, A, C],
PLATimes [mscalarzero, Al]l]

where mscalarone and mscalarzero correspond to 1 and 0, respectively.
The above is an instance of the library call

AssignTo[C_, PLAPlus[PLATimes[a_, A_, B_.], PLATimes[b_, C_]1]]

whose general functionality is

C.« (a- - A_ x B) + (b_-C)

where a_ and b_ are unifiable variables that can be thought of as being of type scalar and A_,
B_, and C_ are unifiable variables of type matrix (with conformal dimensions). The guards
specify that neither A_ nor B_ can be the same as C_, therefore,

AssignTo[A, PLAPlus[PLATimes[mscalarone, A, C],
PLATimes [mscalarzero, A]l]l]

is not a valid transformation. Thus, a new variable, used to hold a copy of A, is declared.
This allows the use of a PLA_ Gemm() call while satisfying the guards.
This creates the following chain of operations:

PLA_Matrix_create_conf_to(A, &MATRIXTEMPA123);}

PLA_Copy (A, MATRIXTEMPA123);}

PLA_Gemm(PLA_NOTRANS, PLA_NOTRANS, mscalarone, A, B,
mscalarzero, MATRIXTEMPA123);

PLA_Copy (MATRIXTEMPA123, A);

For reasons detailed in Chapter 5, this code will be rejected due to its inherent
inefficiencies, but it is one of the paths that will be explored.

Post-Conditions: Adds and Deletes

To advance the state of the computation, the operations are applied to the current state. For
the purposes of code generation, application means being added to the program under con-
struction; in the context of state advancement, it means having the appropriate properties
added to and deleted from the property set that corresponds to program state.

A simple example should clarify this procedure. Reconsider the aforementioned
“chain” of code.

81

www.manaraa.com

1. PLA_Matrix_create_conf_to(A, &MATRIXTEMPA123);}

2. PLA _Copy(A, MATRIXTEMPA123);}

3. PLA_Gemm(PLA_NOTRANS, PLA_NOTRANS, mscalarone, A, B,
mscalarzero, MATRIXTEMPA123);

4. PLA_Copy(MATRIXTEMPA123, A);

At the outset (the non-existent line 0), matrix A had some state (size, shape,
etc.) while MATRIXTEMPA123 had no such properties. After the execution of lines 1 and
2, MATRIXTEMPA123 has the same properties as A and could be used as a substitute for A.
However, after the “execution” of line 3, MATRIXTEMPA123 has had some of those properties
deleted (e.g. that its data component is the same as A’s), has had some left unchanged (e.g.
the size of the matrix), and has had some added (e.g. that its data component is the product
corresponding the matrix-multiplication). After the execution of line 4, the properties of
the two objects again coincide.

4.3.5 Producing Output

The script language must be translated into a compilable language. The viable alternative
would be to have the translation system transform the input down to the level of assembly
code, but that part of optimizing-compiler technology is not part of this dissertation (as
was alluded to in Section 4.2.1). Therefore, the target language is an issue that must be
considered in the realization of the code generator.

First, we must consider which programming language(s) we wish to target. Many
issues arise in such a decision. Since FLAMBE has been written in both Fortran and C, we
target a parallel version of FLAME, PFLAMBE. !

The translation of the algorithm into efficient code has clearly defined lines of demar-
cation. This design decision allows language independence for as long as is possible in the
compilation process. The stratification of the FLAME — PLAWright — PLANALYZER
system is such that new programming languages might be targeted in the future.

4.3.6 A Realized Construction

When the PLANALYZER was supplied with the script depicted in Figure 4.2, it produced
many different coding instantiations. One of these is depicted in Figure 4.6

While the generated library routines shared many traits, they did evince some dif-
ferences. The most common of these was the creation of temporary objects for the storage
of matrices that would act as temporary copies for the computations performed. In the
case of Eager LU factorization, this seems rather illogical, but, it is not universally so. For
example, if the following computations were to occur:

'PFLAMBE is a sugarcoated extension of the PLAPACK language expressed in the FLAMBE manner.
PFLAMBE was selected to be the target language because its format is not in flux. In addition the use of
PFLAMBE allows us to study more deeply nested memory hierarchy issues in Chapter 5.

82

www.manaraa.com

1 for(;;)

2 {

3 PLA_Obj_global_length(ABR, &PLAEnderLength);

4 PLA_Obj_global_width(ABR, &PLAEnderWidth);

5 if (PLAEnderLength == 0 && PLAEnderWidth == 0) break;

6 PLA_Obj_split_size(ABR , PLATOP , &PLAlength2, &dummyint);
7 PLA_Obj_split_size(ABR , PLALEFT , &PLAwidth2, &dummyint);
8 nb = min (PLAlength2 , PLAwidth2);

9 PLA_Obj_view_all (ATL, &A00);
10 PLA_Obj_vert_split_2(ATR, nb , &AO1, &A02);
11 PLA_Obj_horz_split_2(ABL, nb , &A10,
12 %A20);
13 PLA_Obj_split_4(ABR, nb, nb , &A11l, &A12,
14 &A21, &A22);
15 PLA_Local_LU(A11);
16 PLA_Trsm(PLA_SIDE_LEFT , PLA_LOWER_TRIANGULAR , PLA_NOTRANSPOSE ,
17 PLA_UNIT_DIAG , mscalarspecialone , A1l , A12);
18 PLA_Trsm(PLA_SIDE_RIGHT ,PLA_UPPER_TRIANGULAR , PLA_NO_TRANSPOSE ,
19 PLA_NONUNIT_DIAG , mscalarspecialone , A1l , A21);
20 PLA_Gemm(PLA_NO_TRANSPOSE , PLA_NO_TRANSPOSE ,
21 mscalarspecialnegone , A21 , A12 , mscalarspecialone , A22);
22 PLA_Obj_join_4(AOO, AO1,
23 A10, Al11, &ATL);
24 PLA_Obj_horz_join_2(A02,
25 A12, &ATR);
26 PLA_Obj_vert_join_2(A20, A21, &ABL);
27 PLA_QObj_view_all(A22, &ABR);
28 }
29

Figure 4.6: Central loop of created code for the Eager variant of LU factorization

83

www.manaraa.com

A <- B * C;
A <- E;
D<-B *x C *x B x C;

it might make sense to create shadow storage for the B * C result. In any event, the same
compiler technology that is used to determine how to allocate registers most efficiently can
be employed here for entire matrices.

Later, in Chapter 5, we revisit why such differences exist among the produced coding
instances and what they lend the system as a whole.

4.3.7 Libraries

We focus on two libraries that have very similar functionality for the purposes of the research
presented here.

ScaLAPACK

The ScaLAPACK library is a parallel extension of the LAPACK library designed for maximal
code re-use. The goal of the ScaLAPACK project is to implement all of the LAPACK
routines in an efficient manner on a variety of parallel architectures. Through code reuse
(of the LAPACK library), the project attempts to use existing optimized and tested serial
code on each processor of a parallel machine. This is done through an intermediate level
called the PB-BLAS (Parallel Blocked BLAS) [14] in an attempt to supply users with a
layered-library.

Unfortunately, it is our opinion that ScaLAPACK to sacrifices some design coher-
ence, or at least readability, in order to gain this code-leverage. This is not surprising as the
character of the software is heavily influenced by the bottom-up nature of this approach.
Higher-level parallel routines may call lower-level parallel (or serial) routines that do not
share the same design goals. This may result in unfortunate communication penalties. Fur-
ther, the parallel versions of serial subroutines tend to have many additional parameters,
due to the increased indexing complexity. This tends to make these routines somewhat
difficult to use and the underlying library somewhat difficult to maintain.

In addition, ScaLAPACK ties itself to the BLACS communications library. While
the coupling of two libraries may or may not be a problem, there appear to be some problems
with the BLACS in that there are simple global communications patterns that it appears
to lack.

PLAPACK

Like ScaLAPACK, PLAPACK [74] is a library that can be used for doing dense linear algebra
on parallel computers. PLAPACK differs from ScaLAPACK in that it is an object-based
construct that insulates the user from error-prone index computations through the use of

84

www.manaraa.com

“views.” Views allow objects to co-reference portions of the same data (e.g. parent objects
may hold data that can be manipulated by any number of children).

4.3.8 Library Binding

A claim is sometimes made that no class® of user wishes to view the libraries that they utilize
as black box routines. This stands in contrast to the fact that the typical user of a package
such as MATLAB is assumed not to care about what is underneath. In truth, it is often the
case that users do not wish to have to know what is going on underneath, but want the option
of ascertaining and leveraging such knowledge. Projects such as FALCON [20, 57, 19] have
been very successful in automatically restructuring MATLAB code into languages such as
Sage++ and Fortran90. More recent efforts such as Broadway [50] have made strides towards
allowing the user to produce high-performance code while programming in a somewhat naive
manner. This is facilitated by a sophisticated, optimizing compilation system. This obviates
the need for expertise to some degree, but allows for the leveraging of programmer-originated
optimizations.

It is important to note the synergistic role between library and compiler in these
cases. FALCON utilizes little information about the relationships between routines in the
libraries that it uses. Conversely, Broadway exploits such information and benefits from the
layered construction of libraries PLAPACK.

4.4 Experimental Results

The PLANALYZER is a proof-of-concept implementation. In Section 2.8, a number of em-
pirical tests were performed with FLAME as the methodology under study. In this section,
I demonstrate the efficacy of the PLANALYZER as regards code generation by applying it
to a number of algorithmic variants and versions. These algorithms exhibit differing levels
of complexity and the resulting codes evince different performance characteristics.

In this dissertation, the concepts underlying an automated system that could be used
to generate computer code and analysis for linear algebra algorithms have been discussed.
Viewing the components in the context of the automated system as a whole yields an image
akin to the one seen in Figure 4.7.

4.4.1 Generating Parallel LU Factorization

In order to create a hybridized algorithm, one must first generate a number of variants of
the algorithm under consideration. When using the PLANALYZER, the next step involves
translating the algorithms into an input format acceptable to the PLAWright compiler. It
is at this time that these scripts are annotated with performance and analytical directives if
these specializations are desired. Finally, the scripts are coupled with the annotated library

2Tt may be the case that some individual users do wish to do so.

85

www.manaraa.com

Vaiaiife FLAME
I
¥
[PLAWright |
| Translator |
W A — w
beript Version 0 beript Version 1 ... beript Version n

I et = = = =
e e | B

[Coden]| Irnn =1

Hybridizer

[Efficient Code|

Figure 4.7: The “grand scheme” of things as has been discussed.

in order to generate code and corresponding performance analysis. This section covers these
steps and analyzes the results.

Generating the Algorithms

Using the FLAME methodology (see Chapter 2), five common variants of LU factorization
were systematically generated as is detailed in Section 2.4. Because the Eager variant
tended to yield the best performance for large problems executed on parallel machines, it
was selected for specialization in the remainder of the experiments concerning differences
between algorithmic versions.

Generating the Scripts

As is discussed in Chapter 3, the barrier between FLAME and the PLANALYZER is bridged
by converting the algorithm into an ASCII representation. The differences between the way
in which we might depict an algorithm in a technical report and this ASCII version were
examined in Section 3.2.1. Some of these scripts were specialized for the parallel environment
that was to be the target architecture (PLAPACK v3.1 executing on a Cray T3E). The
methods employed to perform this specialization were described in Section 3.1.3.

86

www.manaraa.com

The Scripts: Details

Let us briefly describe the codes that were analyzed by the PLANALYZER system. First,
there were the five algorithmic variants of LU factorization. A corresponding version, in
terms of complexity, of each variant was used for both the code generation and analysis
tests. The common thread between these variants has to do with the sub-problem of LU
factorization. In each case, the submatrix to be factored was localized (via explicit script
directives) so as to exist on one processor. No further directives were supplied. The variants
tested were:

1. Eager LU Factorization

2. Lazy LU Factorization

3. Row-Lazy LU Factorization

4. Column-Lazy LU Factorization

5. Row-Column-Lazy LU Factorization

In order to further explore the capabilities of the analysis engine, the Eager variant
was specialized through both annotation and direct manipulation of a form of the code that
would not be available to the casual user. The versions studied were:

1. Eagerl: The script was specialized to enforce a 1 by 1 blocking. The intermediate
code was hand-massages in order to avoid the call to the LU factorization of the 1 by
1 block (avoiding a function call that would result in a NO-OP).

2. Eager2: The script was specialized to enforce a 1 by 1 blocking as well as explicitly
creating a duplicated-everywhere object (a multiscalar) to hold the portion to be
factored. Annotations were also added so that the would call local PFLAMBE routines
for the triangular solves. The intermediate code was hand-massages in order to avoid
the call to the LU factorization of the 1 by 1 block as well as the triangular solve
involving a unit-diagonal 1 by 1 matrix.

3. Eager3a: Annotations to the script forced the LU-factorization subproblem (A11),
to exist on a single processor. This resulted in an LU subproblem of the distribution
blocking size. Further, function override was used to force the Eagerl algorithm
(above) to be utilized for factoring the LU subproblem.

Eager3b: Annotations to the script forced the LU-factorization subproblem (A11),
to exist on a single processor. Further, function override was used to force the Eager2
algorithm (above) to be utilized for factoring the LU subproblem.

4. Eager4: Identical to Eager3a/3b except that functional override was used to force
a call to a handwritten local LU kernel whose performance was assumed to be that of
a “standard” level-2 BLAS routine (about 10% of processor peak) when solving the
LU decomposition subproblem.

87

www.manaraa.com

5. Eager5: The same as Eager4 save for the fact that the script was annotated to
force a duplication of the object to be factored (a copy into a duplicated-everywhere
multiscalar). This allowed the application of local triangular solves, so the script was
annotated to enforce that optimization (via the use of .<-, instead of <-, assignment
directives).

6. Eager6a: Partitions the matrix to be factored into sub-blocks that are of the algo-
rithmic blocking size (64) rather than the distribution blocking size (16). Functional
override was employed in order to call Eagerd4 for the LU subproblem. All other
operations were global.

Eager6b: Identical to Eager6a, save for the fact that the LU subproblem was han-
dled by Eager5.

Eager6c: Identical to Eager6a, save for the fact that the LU subproblem was handled
by Eagerl.

Generating Code

The script variants were, in nature, similar to the one depicted in Figure 4.8. Each of the
examined variants was given the same level of annotated direction (see Section 4.4.1) to
produce the versions examined.

The codes produced resembled the program in Figure 4.9. For purposes of pre-
sentation, comment bars were placed around the section of code that makes this a Lazy
algorithm, the name was changed from the unique name generated by Mathematica to Lazy
and the lines containing variable declarations and object “free”s were abbreviated.

A number of code instantiations were produced from each scripted variant input.
The number of instantiations could prove misleading so the reader should bear in mind
that the number is the product of the number of instantiations available for each line of
the script involving an operation and, more importantly, that most of the codes generated
were suboptimal. The reason for this latter occurrence is detailed in Section 4.3.6 and is a
property of the prototype nature of the PLANALYZER system. The code generation engine
and the analysis engine were not employed in concert.

The number of code instantiations produced:

1. Eager LU Factorization: 84

2. Lazy LU Factorization: 84

3. Row-Lazy LU Factorization: 588

4. Column-Lazy LU Factorization: 588

5. Row-Column-Lazy LU Factorization: 5292

While only random samples of the generated codes were examined, the more efficient
codes tended to correspond to those that have been generated by hand.

88

www.manaraa.com

has_property unit_lower_triangular ;

has_property upper_triangular ;

has_property square ; // (* Actually, Square here *)

=== A ; // {Recursive} {Permanent} (* Establish name equivalence %)
=== A ; // {Recursive} {Permanent}

partition A => / ATL # ATR \

3222222322

\ ABL # ABR / where ATL is 0 by O ;

ar=ar

O 00O Uik W —

10 do until ABR is 0 by 0

11 partition / ATL # ATR \

12 | ##HRHBERHE |

13 \ ABL # ABR /

14 => / AOO # AO1 | AO2 \
15 | #t#f R R RS RBE |
16 | A10 # A11 | A12 |
17 |-—--- R I
18 \ A20 # A21 | A22 /
19 where A1l is local and

20 A11 is locally square and

21 A11 is nb by nb ; // No larger than this
22

23 401 = UOL <- LOO~-1 % AO1 ;

24 A10
25 A11
26 A11

L10 <- A10 * UOO~-1 ;
(L11\U11) <- A11 - L10 * UO1 ;
(L11\U11) <- lu_fact(A11) ;

28 partition

29 / ATL # ATR \

30 | sttt |

31 \ ABL # ABR / <= / AOO | AO1 # A02 \

33 | A10 | A11 # A12 |
34 | |
35 \ A20 | A21 # A22 / ;
36 enddo;

37 L == A;

38 U =!= A;

Figure 4.8: PLAWright-compilable script for a Lazy version of LU factorization

89

www.manaraa.com

1 #include "mpi.h";

2 #include "PLA.h"

3 int Lazy(PLA_Obj A)

4

5 <variables are declared>

6 PLA_Obj_template(A, &MyTemplate);

7 /*Create usual constants*/

8 PLA_Create_constants_conf_to(A,&mscalarspecialnegone ,&mscalarspecialzero ,&mscalarspecialone) H
9 /*UserWarning: Square ShapeSpec not yet enforced ... rule not firedx/

10 PLAlengthl = 0 ;

11 PLAwidthl = 0 ;

12 PLA_Obj_split_4(A, PLAlengthl, PLAwidthl , &ATL, &ATR, &ABL, &ABR);
13 for(;;) {

14 PLA_Obj_global_length(ABR, &PLAEnderLength);

15 PLA_Obj_global_width(ABR, &PLAEnderWidth);

16 if (PLAEnderLength == 0 && PLAEnderWidth == 0) break;

17 PLA_[]bj_split_size(ABR , PLA_SIDE_TOP , &PLAlength2, &dummyint)
18 PLA_Obj_split_size(ABR , PLA_SIDE_LEFT , &PLAwidth2, &dummyint);
19 nb = min (PLAlength2 , PLAwidth2);

20 PLA_Obj_view_all (ATL, &A00);

21 PLA_Obj_vert_split_2(ATR, nb , &AO1, &A02);

22 PLA_Obj_horz_split_2(ABL, nb , &A10, &A20);

23 PLA_Obj_split_4(ABR, nb, nb , &A11, &A12, &A21, &A22);

24 /**/
25 PLA_Trsm(PLA_SIDE_RIGHT , PLA_UPPER_TRIANGULAR , PLA_NO_TRANSPOSE ,
26 PLA_NONUNIT_DIAG , mscalarspecialone , AOO , A10);

27 PLA_Trsm(PLA_SIDE_LEFT , PLA_LOWER_TRIANGULAR , PLA_NO_TRANSPOSE ,
28 PLA_UNIT_DIAG , mscalarspecialone , A0O , AO01);

29 PLA_Gemm(PLA_NO_TRANSPOSE , PLA_NO_TRANSPOSE , mscalarspecialnegone ,
30 A10 , AO1 , mscalarspecialone , A1l);
31 PLA_Local_LU(A11);
32 /********************!hk******************!hk*************************/
33 PLA_Obj_join_4(A00, AO01, A10, A1l, &ATL);
34 PLA_Obj_horz_join_2(A02, A12, &ATR);
35 PLA_Obj_vert_join_2(A20, A21, &ABL);
36 PLA_Obj_view_all(A22, &ABR);
37 }
38 < objects are freed>

39 1} /+End of Programx/

Figure 4.9: PLAPACK/PFLAMBE code produced by the PLANALYZER

90

www.manaraa.com

4.5 Chapter Summary

)

While computer code relies on what is underneath it, a “paper library” is not similarly
dependent. Such a library assumes certain underlying functionality; it need not describe,
down to the “bones” of the hardware, everything that must be done. This allows an expert
in a higher-level domain to supply a library that needs to have its slots filled [57]. The
traditional method supplies the pegs instead of the pegboard [5].

The important point is that a library either has to have the “right” level of modular-
ity or multiple levels of modularity. Either avenue allows the user to program in a reasonable
way, but it might be that only the latter situation really allows for machine-dependent op-
timizations to be carried out.

The automated code generation system described in this dissertation is an attempt
to supply the “best of both worlds” to the user. The scripts would be considered under-
specified and employing the PLANALYZER allows the automated coupling of this “paper
library” to an underlying, encoded library.

91

www.manaraa.com

Chapter 5

Automatic Analysis of an
Implementation

This chapter presents an analysis strategy and a prototype implementation that utilizes the
approach presented in this research work. This is important to the research presented here
because the ability to determine the complexities and costs of algorithms is useful when
constructing and maintaining linear algebra libraries.

First, the synergistic relationship between analysis and the design strategy, already
presented, is introduced. Then the various “formats” of analysis are mentioned along with
additional information regarding the parameters the analysis engine is intended to ana-
lyze. Finally, the potential interaction between the analysis tool and the algorithmic script
language is discussed.

5.1 Motivation

Recall the example of Eager LU factorization illustrated in Figure 5.2. We consider the task
of analysis by examining a script annotated with directives such as those given on lines 20
and 22-32 of that Figure. An example script may be seen in Figure 5.3, while an illustration
depicting this chapter’s place in the overall scheme of the document is depicted in Figure 5.1.

Notice that the script in Figure 5.2 makes only minor concessions to issues of imple-
mentation. The only indication that the script is intended for a parallel architecture lies in
the annotations related to determining the size and data locality of A11. By way of contrast,
the PLAWright code in Figure 5.3 not only contains directives that relate to the role of A11
in matrix partitioning, but lower-level code that enforces where computation takes place by
explicitly handling the communications involved. Further, that same script requires that a
specific routine (PLALu1) be used to perform the local LU factorization and that the analysis
engine should ignore what is in the performance section of the annotated library and apply
the line-by-line performance measures included in the script.

92

www.manaraa.com

A=LU
Variants FLAME]‘/’/

(PLA‘»;\v’right)
L Translator J

| 4 —y)
beript Version Of| | Beript Version 1 g beript Version o
= Z = =
[Plarm&r][Rnalgrzerl [Plam&r I[Analj,rzerJ [Plarmer J [Analgrzer]
T L I i
| Codel || [Tnp) =3 || Codel ||{Tnpi=3 [Coden | Tinp)=3

Figure 5.1: Where the analysis system fits into the “grand scheme” of things.

The task of analyzing the “simpler” script by hand involves a number of hurdles.
First, one must determine what routines are involved. Then one must determine the per-
formance characteristics of those routines. After one has determined such characteristics
for each operation in the script, it is necessary to apply the analysis as the loop executes
and the partitioning changes the size and shape of each object. While the application of
line-by-line, annotated complexity estimation (as is seen in Figure 5.3) is also error-prone
when done by hand, it does obviate the need to determine the performance characteristics
of the routines involved. In either case, the task then becomes making the resultant formula
useful in some manner.

There seems to be no escaping these problems unless one automates the process.
Given an underlying library that is not “smart” (i.e. one that does not choose the best
algorithm for the required operation), the simpler script forces the analyst to sort through
all applicable routines in the library in order to determine the best routine available. An
intelligent library attempts to pick the most efficient coding unit for each operation, but this
makes the analysis task onerous because “the best” changes as the matrix sizes and shapes
change throughout the course of execution. While the highly annotated script’s analysis
burden is unchanged, the accuracy of that analysis is questionable in this case because a
great many simplifying assumptions are implicit in the per-line directives.

Therefore, automating the system of code production in such a way that the pro-

93

www.manaraa.com

has_property unit_lower_triangular ; // (* Permanent Property *)
has_property upper_triangular ;
has_property square ; // (* Actually, Square here *)
=== A ; // {Recursive} {Permanent} (* Establish name equivalence *)
=== A ; // {Recursive} {Permanent}
partition A => / ATL # ATR \

| R |

\ ABL # ABR / where ATL is 0 by O ;
do until ABR is 0 by 0O
10 partition / ATL # ATR \
11 | st |
12 \ ABL # ABR /
13 => / AOO # AO1 | AO2 \
14 | SRR RR SRS SRS |
15 | A10 # A11 | A12 |
16 [-==-- #--— - |
17 \ A20 # A21 | A22 /
18 where A1l is local and
19 A11 is locally square and
20 A11 is nb by nb ; // No larger than is implied

arre=ar

OO0~ Ui WhN

22 A1l (L11\U11) <- 1lu_fact(A11) ;

23 A12 = U12 <- L11°-1 % A12 ;

24 A21 = L21 <- A21 * U11°-1 ;

25 A22 <- A22 - L21 % U12 ;

26 partition

27 / ATL # ATR \

28 | ##SR#HRBRRH |

29 \ ABL # ABR / <= / A0O | AO1 # A02 \

31 | A10 | A11 # A12 |
32 | |
33 \ A20 | A21 # A22 / ;
34 enddo;

35 L =I=A;

36 U == A;

Figure 5.2: Computer-readable script for Eager version of LU factorization

94

www.manaraa.com

A ; // {Recursive} {Permanent} (% Establish name equivalence %)
A ; // {Recursive} {Permanent}
has_property unit_lower_triangular ; // (* Permanent Property *)
has_property upper_triangular ;
has_property square ; // (* Actually, Square here x)
partition A => / ATL # ATR \
[E::3:5:3:5:3:5 03524
\ ABL # ABR / where ATL is 0 by O ;
do until ABR is 0 by 0

O arr

OO ULRWN

10 partition / ATL # ATR \

11 | R |

12 \ ABL # ABR / => / A00 # AO1 | AO2 \

13 | S |

14 | A10 # A11 | A12 |

15 |--——- - I

16 \ A20 # A21 | A22 /

17 where A1l is local and

18 A11 is locally square and

19 A11 is nb by nb ; // No larger than is really implied
20 Performance performance_override ("2*nb*nb*nb/3");

21 function_override ("PLALul");

22 A1l = (L11\U11) <- lu_fact(A1l) ;

23 EndPerformance;

24 Performance performance_override("Bcast(nb * nb * 1/2) to PCC");
25 Lower[L11tri] |# <- Lower[L11] ;

26 EndPerformance;

27 A12 = U12 .<- Lower[L1ltri]~-1 * A12 ;

28 Ulitri -* <- Upper[U11] ;

29 Performance performance_override("1/2 * nb * nb * Max(Length(Local(A21)))");
30 A21 = L21 .<- A21 * Upper[Ulitril--1 ;

31 EndPerformance;

32 Performance performance_override("Bcast(nb # Max(Length(Local(L21)))) to PCC");
33 L21col |* <- L21 ;

34 EndPerformance;

35 Ul2row -* <- Ul12 ;

36 A22 .<- A22 - L21icol * Ul2row ;

37 EndPerformance;

38 partition

39 / ATL # ATR \

40 | A |

41 \ ABL # ABR / <= / A00 | AO1 # A02 \

42 (S — |

43 | A10 | A11 # A12 |

44 | |

45 \ A20 | A21 # A22 / ;

46 enddo;

Figure 5.3: Annotated script for Eager version of LU factorization

95

www.manaraa.com

duced code and the produced analysis rooted in the same process is a promising avenue of
research and it is detailed in this chapter.

5.2 Issues

5.2.1 Why Performance Is Important

It seems to be taken for granted that performance is important, but why is that? It is often
the case that an individual does not need an answer immediately. Further, until Moore’s
Law runs out of steam, we are faced with an ever-faster array of processors. Thus, expending
effort on optimizing code in order to improve performance by a few percent may involve
unwise allocation of resources.

Certainly, this is a questionable practice if that optimization effort takes a great deal
of time and has limited value. Chapter 3 sought to address the issue of programming ease
and speed. If performing this optimization requires a small investment of expert resources,
it may make sense to do so. In addition, it does not do much good to predict tomorrow’s
weather if the task is not completed until the day after tomorrow; some problems are such
that they can take advantage of both the fastest machines and the fastest algorithms.

5.2.2 Why Performance Analysis Is Important

A basic question that may be asked is: “Is performance analysis necessary?” Obviously,
it is not. There are many numerical libraries, both abstract and concrete, devoid of any
analytical tools. However, there are drawbacks to that approach.

The first, and probably most important, disadvantage is seen when attempting to
optimize such a library for a new architecture. Without formulaic guidelines it is difficult
to predict how any given change will affect the performance of different parts of the exe-
cutable. Similarly, it becomes difficult to determine where optimization efforts should be
concentrated. One may be unable to readily determine if the problem lies in the algorithm
or in a specific realization of that algorithm. Since there is no systematically predicted
performance, there can be no “red flags” that indicate unexpectedly poor performance [37].

Predicting Performance

Trying to remedy systematic deficiencies by running a empirical tests is also an ill-considered
approach. This method is time-consuming and tends to be resource-intensive. More impor-
tant, the results of a large number of these tests may be required in order to determine what
parts of the algorithms are responsible for cost overruns. While it may be possible to take
a large amount of empirical data along with information about shared sub-components of
the algorithms and use statistical analysis to determine where the bottlenecks are, it would
be problematic to do so for at least two related reasons.

The first roadblock to this approach is the huge amount of data necessary for such
an analysis when dealing with a large, monolithic library. There are simply too many

96

www.manaraa.com

variables to make this purely statistical method practical. The second problem is even more
fundamental and difficult to overcome. Potential “feature interaction” would require that
an exponential number of test cases be analyzed.

There are a number of sources for poor library performance, but all can be said to
be in one of two major categories:

1. Routines with poor predicted performance.

2. Routines with performance that is poor (although not necessarily predicted to be
so) [37].

It is not always the case that the hindrances can be classified as belonging exclusively to
either category unless one employs a modeling strategy.

Determining the Sources of Performance Shortcomings

The algorithm itself is a potential source of inefficiency. As this is the core of an implementa-
tion, it can be the source of the greatest differences in achieved performance. Analysis tools
may not construct a superior algorithm from an inferior one. However, they can be used
to indicate the shortcomings in an algorithm and, possibly, to suggest algorithmic changes
that will result in superior performance. These clues may result from contrasts between two
algorithms intended to perform the same task, or from a mismatch between the performance
that the user predicts, based on experience with similar algorithms, and the performance
predicted by the analytical engine (with its built-in knowledge of the underlying algorithmic
and architectural interactions).

It is not surprising that the implementation of the algorithm can be the source
of variations in performance. There are some potential sources of inefficiency that apply
only to the parallel computational case, while others apply to both the serial and parallel
instances. These sources include the use of improper communication algorithms, a mismatch
between theoretical models and real machines, and unfortunate assumptions about the use
of processor and memory resources and their interactions.

We note that it is sometimes difficult to determine when the performance failings are
the result of poor algorithmic design or implementation details. For example, if one takes a
high-level view, it is possible to predict superior performance in an algorithm. Yet, one may
know that the algorithm will translate into an implementation that has poor performance
regardless of the real machine used. Alternatively, this poor performance may be completely
dependent on the details of the underlying computational system.

Code Steering

We wish to have the PLANALYZER select the “best” algorithm in a given situation, but
we also wish to equip the end-user/programmer with the ability to guide the system to a
routine/method that he believes is better (or wishes to study). Therefore, whatever methods
are used, (incremental) user-interaction should be kept in mind even if the software does
not present a “point-and-click” type of interface.

97

www.manaraa.com

5.2.3 Convenience vs. Performance

The analysis framework and tools should help to assuage a typical fear about scripted
languages. Namely, that they are convenient to use, but their performance tends to be
poor. Accepted wisdom holds that trying to retain this ease of expression as one migrates
to a parallel environment is likely to exacerbate these problems. One can find any number
of examples where this “rule of thumb” does, in fact, hold true [20].

The development system presented here attempts to address both convenience and
performance concerns. Allowing this freedom is an effort to strike a balance between too
much and too little guidance being provided by the software. It is made possible by making
the ability to cleanly mix the layers of annotation and scripting a central concern.

There are a number of ways in which this work deals with performance considera-
tions. We assume that the underlying library (the target of script translation) is made up
of efficient routines. Therefore, a script translated into a set of calls to that library should
also be efficient.

If the performance of the existing code segments is analyzed properly and if a sys-
tematic way of gluing them together intelligently to perform the new algorithm can be
constructed, high-performance should be achieved. Here, “high” is defined to be as perfor-
mance comparable to that which someone intimately familiar with the underlying library
could effect.

User Benefits

The potential benefits yielded by our analysis tools, largely mirror those of handcrafted
analysis. Analysis tends to provide guidance for algorithm and implementation tuning
along with information regarding case-specific proximity to optimal performance.

While this sort of activity can be done by hand, it is made much easier by computer
assistance in a number of ways. First, when one is dealing with a large library, the individual
analysis tasks are time-consuming. The determination of relationships and interactions
between routines is more so. In addition, from a psychological point of view, this activity
requires shifting back and forth between different concerns and that tends to impose an even
greater time penalty on the designer.

The most obvious benefit to analysis tools is the ability to quickly and dynamically
determine the complexity of a given algorithm or implementation. This allows the designer
to determine the efficiency of the algorithm at various levels of detail. One does not have to
waste time tuning an algorithm of inherently sub-optimal complexity. Further, when dealing
with a multi-tiered algorithm, the analysis may reveal patterns across and interactions
between different levels and modules.

While the analysis system may not suggest solutions for unnecessary interactions,
couplings, and dependencies, it can make them obvious to the experienced designer and
more apparent to the novice. In a similar manner, the analysis system may reveal cases
where the specificity of the situation is not being taken advantage of by the designer.

98

www.manaraa.com

User Responsibilities

The responsibilities of the motivated user who wishes to exploit all of the abilities of the
analyzer are too situation-dependent to be detailed here. This section, instead, gives and
introduction to the features and requirements of the system as they relate to the “casual”
user.

The user must supply input to the analyzer in a form that the analyzer can read.
However, the programmer need not be concerned with how heavily annotated his scripts are
because the output form of analysis is not entirely dependent upon the form of the input.

The other matter is the specification of the output. There are many potential forms
that output might take. While there are default settings, the PLANALYZER also allows for
the specification of different ways in which to measure (e.g. operation counts, time taken
etc.), different forms of expression, and exactly what to measure (e.g. communication time
only).

5.2.4 Traditional Approaches

Typically, algorithmic analysis in this area has been both manual and somewhat ad hoc. The
usual scenario involves the analysis of an algorithm as a stand-alone example. The reasons
behind performance differences in variations on an algorithm are largely hidden because of
the monolithic nature of the analysis.

5.2.5 Problems with Traditional Approaches

While such an analysis may be accurate, it is not as useful as it might be. Without a
systematic approach to the analysis of a family of algorithms, it is difficult to determine the
comparative advantages and disadvantages of the algorithms. Specifically, this approach is
of severely limited value in the construction of hybrid or polyalgorithmic variants [40, 56].

5.2.6 A New Approach

Given a systematic approach carried through the design of a library, one can analyze al-
gorithms that rely on the components of that library. It is the interaction between levels
of the library that tends to make this analysis difficult. A consistent approach in library
design leads to a consistent pattern of interaction.

Research into the issue of hybridization [40] gave us some insight into how useful the
systematic construction of the algorithms and the layering of the library were when it came
to accurately modeling the target computational environment. Preliminary tests showed
that these analytical models were reasonably accurate.

This systematic nature also provides for the construction of automated analysis tools.
These tools allow for a more systematic and informed approach to the optimization task that
is typically so onerous in the absence of a unified approach, let alone such an automated tool.
The central idea is that the performance annotations mirror the code that, in turn, mirrors

99

www.manaraa.com

the algorithm. Thus, to use the tool, one only need be an “expert” in the construction of
algorithms.

By compiling the algorithmic script into both a functional program and an analytical
code readable by the Mathematica [77], symbolic manipulation package, one can interactively
develop and analyze these algorithms immediately, in the same, automated environment.
Further, these analyses need not be tied to a single set of expressive primitives, such as time
required, but may be re-formulated in terms of operation-class counts, etc.

5.2.7 Coupling Code and Performance

The module-dependency graph of a systematically constructed, layered library has fewer
leaves than that of a haphazardly constructed library providing comparable functionality. If
we implement our own communications library in terms of some set of primitives, we have
more control and fewer microbench tests to perform. The same approach can be extended to
a very low level, but there is a trade-off. We must determine how sophisticated to make the
code — performance parser and the right balance to strike between readability, accuracy,
and work-intensity. Annotating the library at too high a level, results in accuracy at the
cost of having to benchmark and annotate too many routines. Doing so at too low of a level
makes the intermediate form of performance code difficult to simplify. It is logical to make
the annotations look like code to as great an extent as possible so that both are readable
and so that it is not necessary to learn a new “language” for each task.

Library Strata

One of the most basic reasons for the requisite flexibility of the modeling strategy is that
what comprises an “operation” changes as one proceeds in designing, implementing, and
refining an algorithm. For the tool to be useful it must be able to address the needs of the
designer as his view of the operations changes. While this can be motivated in the sequential
arena, it is more straightforward to do so in the context of a parallel environment.

Consider a simple algorithm like the outer-product computation that was discussed
in the LU decomposition algorithm. Obviously, in the distributed case there are a number of
ways to define what it means to perform a matrix-matrix multiplication. For instance, there
is the entire multiplication: Ay < Agy—@21dl,. Even if we ignore details of implementation,
we may consider the time spent performing the calculation to be restricted to the time
spent doing so on a given processor. We may wish to ignore time taken to perform the
manipulations involved. Further, we may consider some of the implementational issues that
arise as part of the SUMMA algorithm. We may wish to perform the matrix multiplication
with a set of columns (e.g. Ao instead of @»1) in which case “the multiplication” may be
any of the component multiplies, global or local, of this larger multiplication. Therefore,
the analysis system must allow a shift between these different views.

Independent of the form the analysis takes, two fundamental questions must be
answered:

1. What qualities are to be analyzed?

100

www.manaraa.com

2. In what quantitative terms should these qualities be expressed (i.e. what are the
“units” of analysis)?

In the area under study, the answers to these questions are readily available. The
analysis system measures the time and memory required to perform a given algorithm.
Such qualities have generally accepted unit-measures; time is generally measured in CPU
(milli- /micro-) seconds while memory used is measured in (kilo-/mega-) bytes.

While these two answers provide all that one may require from a system geared to
purely practical analysis, the features that they enable may not be sufficient for a flexible
analytical tool for a number of reasons. The most basic difficulty is that these measurement
quanta may not allow the measurements to be expressed in a manner desired by the user.
For example, if one wishes to determine the number of matrix-matrix products that are
performed, time and space complexity measures may not necessarily yield useful information.
However, intelligent structuring and base-level specifications yields a set of constructs that
can be used to express both. Further, there are guidelines that help one to determine the
kinds of primitives that must be provided if a certain kind of feedback is desired.

Parameters of Analysis

One should be able to use case-specific information during the analysis of an algorithm.
Certain measures have no meaning if one does not have a machine model, but do not require
a machine instance in order to be defined. Other measures require a fully-specified machine
(and problem) environment in order to have meaning. Given these facts, the analyzer is
designed around a set of primitives that yield great flexibility in these areas. Furthermore,
to facilitate feedback in the desired format, the underlying language should provide for the
dynamic (user-based) creation of new “concepts.”

Let us be more concrete. The useful object-based abstractions under considera-
tion: manipulation, calculation, and property determination, have already been discussed
in Chapter 3. Almost any non-trivial algorithm uses all of these abstractions. Therefore,
the analysis must involve, or allow the involvement of, all three. The caveat in regards to
allowing the inclusion of measures for some abstractions is included as one may also wish
to ignore certain measures. Most obviously one might wish to discount property determina-
tion as this calculation is often computationally trivial. Further, one might wish to ignore
manipulation time and space complexity. Alternatively, when one wishes only to consider
scalability issues, it is often convenient to ignore everything ezcept the time spent in the
manipulation (communication) subsystem. It is not difficult to create other cases wherein
one might wish to consider only parts of some of the abstractions while ignoring others.

There are many ways to construct the framework of this analysis system and the
implemented computational engine. It seems necessary to allow the user a great deal of
control over the primitives and concepts composed from those primitives. However, it would
seem that there should be a certain “default” setting that is both flexible enough to provide
a tool for users with many disparate needs and conventional enough to provide feedback in a
format that is commonly seen in papers on the analysis of similar algorithms. The primitives

101

www.manaraa.com

provided should be useful in a wide range of analysis tasks. This is because the extension of
the PLANALYZER through the inclusion and definition of new primitives requires greater
expertise than is practical to expect.

While it may seem a bit confusing to mix terminology with regard to analyzing
algorithms and analyzing programs, perhaps it should not. In a distributed computational
environment, it may be possible to ignore the model versus implementation distinction. It is
probably most useful to think of physical computational systems as somewhat complicated
models. This is not a new idea; any system can be mimicked with a complex enough model
via successive refinement. This dissertation focuses on providing a useful model as well
as a systematic way to determine a base set of primitives that have to be evaluated so
as allow the determination of fully quantified results. We are concerned with the clarity
with which the tool under consideration here supplies information. However, the goal of
automating the kind of performance profiling that has traditionally been done by hand is
also a consideration.

Analysis of Components

In order to perform analysis by composing “building block” analytical modules, some base
level of analysis must be determined. The simplest form of composition would be the
unadorned addition of these components (formulae). In this section, we assume that this
is how analysis is carried out. Later sections discuss why this simple approach may be
insufficient.

The previous section discussed some of the issues that need to be considered in
the construction of the analysis tool. Among these was the determination of what is to
be measured, in what terms that measurement is to be expressed, and what makes up
the primitive set. Let us, for the moment, restrict ourselves to a small but useful set of
measurements; the «,, and vy time-complexity set. Here, « is the start-up cost for a
message, 3 the cost per item sent, and v the time per computation. This is a simple view,
specialized for the distributed computing case. However, there are analogies to a and 3 in
a serial architecture, and multiple s can be used, so this model is useful.

The next task is to determine which components must be measured. The last section
discussed why this is a question. Let us suppose that we have made a utilitarian decision.
If we wish to analyze a library, we can express the lowest layer (the leaves) in terms of the
primitive measures (the a,, and v mentioned previously) and describe the other layers
in terms of those beneath them. There is a trade-off between accuracy and annotative
expediency with this approach favoring the latter.

While the assumption is that the library is layered, this is not strictly necessary.
Many modern software packages, such as Sniff+ [12], automatically determine the calling
structure of a set of routines. From this directed graph, it is possible to construct a com-
plexity model from the leaves “in.” While this situation is not optimal, it does not present
an insurmountable block to the analysis strategy discussed in this chapter.

One problem that may occur to the reader involves the modeling of the leaves. The
leaves do not rely upon any other (visible) routines. Typically, one performs empirical

102

www.manaraa.com

measures on these components for various problem and computational grid sizes and then
uses something akin to a line of best-fit to express their complexity. These routines often
have performance characteristics which are dependent on problem-specific details such as
operand shape. The user needs to determine the level of accuracy that they require of the
analysis system in order to determine how highly refined the base-level analytic models need
to be.

Synthesis of Component-Analysis

We assumed that the analysis of a component that utilizes other analyzed components as
building blocks was a solved problem. Let us consider the fact that we may eventually wish
to simplify the resulting analyses. In that case, to analyze a component it may be beneficial
to synthesize the analysis of the sub-components which make up the routine (component)
to be analyzed.

The most obvious application of “synthesis” is the simplification of the implicit
summations that occur over a looping construct within a routine. Once the summation is
made explicit, simple mathematical substitutions can be made to reduce the complexity (as
measured by lexical length) of the expression.

It should be pointed out that this synthesis is not always a good idea. For, if one
performs the synthesis at the lowest level, it may be considerably more difficult to combine
expressions at higher levels without sacrificing accuracy.

5.3 Contributions of the Systematic Underpinnings

Approaching the design of linear algebra algorithms in a systematic fashion reduces the dif-
ficulty of the analysis task. Our approach to algorithmic and library construction tends to
simplify and make explicit the relationships between different parts of the programs as they
relate to overall performance. Often, implementors optimize algorithms in a compartmen-
talized fashion. They rely on intuition and experience rather than complexity measures to
drive their optimizations and tend to view each improvement without considering its impact
on the larger picture.

Perhaps this is almost unavoidable when the routines to be optimized are parts of
a library with no underlying framework. The analysis required in such a case could be
monumental. There are two major roadblocks to be considered:

e Monolithic construction methodology and
e Modular, but poorly thought out, construction practices

If the library is modularized, the different routines tend to call on one another. However,
modularity does not imply design soundness, and these relationships between modules may
not follow any discernable pattern. The combination of these two properties complicates the
analysis task. The monolithic alternative may seem preferable as that strategy avoids the
complications caused by module interactions. Unfortunately, that approach yields a new

103

www.manaraa.com

analysis task for every derived algorithm and fails to provide any sort of framework from
which to gain leverage from the analyses already performed. Not only does this result in more
work for the analyst [70], but it also seems to disallow even the possibility of determining
meaningful patterns unless the specification of the sub-components is systematic.

Conversely, if the software system is built with a unified approach and utilizes a
systematic methodology to build the algorithms, not only is the construction process eased,
but the analysis is considerably less complicated. The design process allows one to follow
the framework of the supplied algorithms. Since analysis tasks can mirror the structure of
the objects of their analysis, they can be constructed top-down, bottom-up, or middle-out
along with those algorithms. It should also be noted that the algorithmic design could follow
the analytical work.

Many of these benefits come “for free” when the modularity of the software is pre-
sumed to be logical and easily understood. However, most of them are simply enabled by
this systematic construction. There is still something of an onus on the (low-level) designer
to specify the functionality, complexity types, parameters, and measures to the analysis
engine, but it should be noted that:

1. The layered construction, in concert with the FLAME methodology, eases the deter-
mination of the patterns seen in a given algorithm and

2. The formulaic specification of these patterns opens the door for a systematic classifi-
cation of these patterns [43]).

5.3.1 Modularity of the Analytic Harness

There has already been considerable discussion about the various uses of and advantages to
an integrated analysis strategy and system. This section attempts to point out the differing
impact that such tools have on various types of libraries.

One must consider the manner in which a designer would interact with the design
system. Thus, the first subsection deals with issues related to hand-built software systems as
well as presenting some synthesis of the relevant ideas already discussed. The next subsection
deals with the more pertinent ideas in relation to automated library construction. Given
the cookbook nature of the algorithmic construction and analysis, systemic automatization
appears to be a realizable goal.

Impact on Manually Assembled Systems

Typically, a library, even if constructed in a very systematic way, is hand-written by pro-
grammers (or non-programmers in the case of “paper” libraries mentioned in Section 4.5).
Since this approach to library construction is the one most applicable to both well designed
and poorly designed libraries, let us consider what can be done in the latter case (as the
former has much in common with the automated situation discussed in Section 5.3.1).
While the well-integrated, flexible analysis tools discussed here are not entirely
amenable to use in a “disorganized” environment, it might be possible to gain some ad-

104

www.manaraa.com

vantage from them. If the analyst is willing to delve into the particulars of the composition
and analysis structure, it may be possible to regain some of the flexibility possessed by the
tools in the more well organized case.

The first assumption is that the code to be analyzed is neither written in the script
language nor in a style that mirrors that language. This assumption is made because if it
is written in that style, the analyzer can be used on the script or on something that can be
reverse-engineered from the code.

The easiest way to use the analysis tools in this case would be to hand-translate the
given code into the corresponding script. One might have to translate a number of routines
into the script language before getting meaningful feedback from the automated system.
However, the user might wish to declare the routines themselves as primitives, or use the
analysis engine’s abilities to redefine “concepts,
for the routine.

b2

and supply their own complexity measures

This approach is may result in analyses that lack comprehensibility or fail to reflect
algorithmic modifications. Both of these problems can be ameliorated to some degree if
the user is careful in their design of primitives and concepts, making them compatible with
the remainder of the automated analysis engine. While it may be that the engine lacks
some of its former ability to simplify the resultant equations, little should be lost in terms
of reflecting algorithmic changes if the user is careful to provide layers similar to those
discussed here. The analysis engine should also be modular and layered as is the case with
the prototype under consideration in this chapter.

Impact on Automated Systems

We now begin a discussion regarding how the analysis engine may aid the automation
process and how automation makes the analysis chore simpler. At the same time, we need
to address what is required of the user.

Given an automatic tool for the construction of these algorithms, this system might
be used to hybridize algorithms already instantiated. Given an algorithm for computing
function A using method I, the system presented in this dissertation could generate methods
IT and III. Each method has its advantages and disadvantages. Often determining when one
algorithm is superior to another is a complex task. Given an engine that generates equations
that can be evaluated on the fly, such hybridization would become mechanized. This same
approach could prove useful in the case that several levels are simultaneously hybridized.
However, it becomes less reasonable to ignore evaluation (selection) time as one goes down
to lower levels of the memory hierarchy.

Many of the issues relevant to the analytical tool are independent of this generator.
Such a tool could be used to select the “best” algorithm from a library, even when that
library has nothing to do with the system described here, provided that some sort of “hand-
shaking” between requirements and provided services [30] can be performed. If the system
can determine that a given routine fulfills the requirements of a given “call,” then the system
could take pre-evaluated information about these “gray box” routines and determine which
variant is optimal in a given situation.

105

www.manaraa.com

5.4 Implementation: Automated Analysis

Thus far we have discussed what is desirable in the abstract. Now, we delve into issues of
implementation. To review the current stage of the process as it now stands, the reader is
referred to Figure 5.4. In particular, the reader’s attention is directed to the two boxes in
the lower-right quadrant of that Figure.

Intermediate Code
{Compiled PLAWright)

r

Binding
(Library) (Analytical)

/\

Executable Code Nampleiis Saatsis
Code
. !
CiFottran Compiler on Matheanatica Analysis
Target Architecture Engine on Commodity
{e.g IBMSPZ, Cray T2E) System
- A\

Figure 5.4: The position of the analysis engine in the context of the implemented system.

5.4.1 An Analysis-Ready Script

Let us consider a script presented in the preceding chapter, Figure 4.4 (page 75). Recall
that this algorithm is a version of the Eager variant to LU factorization. In that script, the
user explicitly controls the data distribution so that only local computations (computational
kernels) are required. In Figure 5.5, a replication of Figure 5.3, two lines (25 and 28) of this
script are annotated with their associated cost.

5.4.2 Explanation of Script Extensions and Line-Cost Estimates

A few questions may arise upon viewing this annotated script (Figure 5.3). For example,
one might ask why some of the lines have no associated cost. This script reflects a somewhat
arbitrary decision. The rationale is that those operations that have a cost which does not

106

www.manaraa.com

A ; // {Recursive} {Permanent} (* Establish name equivalence *)
A ; // {Recursive} {Permanent}
_property unit_lower_triangular ; // (% Permanent Property *)
has_property upper_triangular ;
has_property square ; // (* Actually, Square here x)
partition A4 => / ATL # ATR \
[E:z:3:2:2:5:3:5:3:2:2 4]
\ ABL # ABR / where ATL is 0 by O ;
do until ABR is 0 by 0

L= i =]

OO UTLRRWN -

10 partition / ATL # ATR \

11 | # R |

12 \ ABL # ABR / => / A00 # AO1 | AO2 \

13 [E:2:3:5:255:00 5050055054

14 | A10 # A11 | A12 |

15 [-==-= R [

16 \ A20 # A21 | A22 /

17 where A1l is local and

18 A11 is locally square and

19 A11 is nb by nb ; // No larger than is really implied
20 Performance performance_override ("2*nb*nb*nb/3");

21 function_override ("PLALul");

22 A1l = (L11\U11) <- lu_fact(A1l) ;

23 EndPerformance;

24 Performance performance_override("Bcast(nb * nb * 1/2) to PCC");
25 Lower[L11tri] |* <- Lower[L11] ;

26 EndPerformance;

27 A12 = U12 .<- Lower[L1ltri]~-1 * A12 ;

28 Ulitri -* <- Upper[U11] ;

29 Performance performance_override("1/2 * nb * nb * Max(Length(Local(A21)))");
30 A21 = L21 .<- A21 * Upper[Ul1tril--1 ;

31 EndPerformance;

32 Performance performance_override("Bcast(nb # Max(Length(Local(L21)))) to PCC");
33 L21col |* <- L21 ;

34 EndPerformance;

35 Ul2row —* <- U12 ;

36 422 .<- A22 - L2icol * Ul2row ;

37 EndPerformance;

38 partition

39 / ATL # ATR \

40 | A |

41 \ ABL # ABR / <= / A00 | AO1 # A02 \

42 [=mmmmmmmmm - |

43 | A10 | A11 # A12 |

44 | |

45 \ A20 | A21 # A22 / ;

46 enddo;

Figure 5.5: Optimized script for Eager method of LU factorization with performance anno-
tations

107

www.manaraa.com

depend on the size of the object and are low enough so as to be considered “noise” are
ignored and others are assigned the complexity measures corresponding to the performance
annotations provided by the library. Our focus is on the on the critical path of execution
and those functions which contribute to it. Thus, global operations are the items of greatest
import and receive the most attention in the analysis phase. The second easily motivated
question regards the line-by-line cost assignment. One could have assigned a cost to the
entire script or to every do-enddo loop as both are viable alternatives. However, the analysis
issues that arise are more easily motivated by this line-by-line cost-assignment technique.

Given the annotated script and the summation expression reflecting the cost of the
script (seen in Section 5.4.3), a few questions arise. The two that relate to the annotations
themselves are the most easily dispensed with. The Max(Width/Length(Local(object))) is
simply a functional programming notation for determining the maximum size of the object
in a given dimension over the set of nodes (i.e. how much is held by the node that holds the
most). This is done because this maximum tends to be the bottleneck for the algorithm. The
second is the “Broadcast” function. This can be replaced “underneath” by any method of
broadcast and the analytical annotation reflects the complexity of the algorithm employed.

The expression reflecting the cost of the algorithm embodies a number of implicit
assumptions. While these assumptions are not strictly enforced in the analysis engine, they
are useful in order to present a simple example. As was mentioned above, the Broadcast may
take place in a number of ways. Therefore, its cost depends on the machine architecture and
the manner in which the broadcast is performed. Here, for simplicity, a two-dimensional
mesh is assumed, and the broadcast proceeds via a minimum spanning tree algorithm.
While this convention regarding the broadcast is logical and not greatly limiting, the second
simplifying assumption is a bit more restrictive. In order to present a concise summary
formula, we have assumed three things:

1. That the distribution blocking size is the same as the algorithmic blocking size.
2. That the size of the matrix (n) is an integral multiple of this blocking size (nb).
3. That we have used a block-cyclic distribution in both dimensions.

In Section 5.6 these restrictions are relaxed. In such cases, accuracy tends to come
at the cost of intelligible cost expressions.

5.4.3 Analytical Result

Computing the total time required for the parallel LU factorization, Try(n,r, ¢, b) thus
requires us to evaluate

n —1ib
cb

n—ib.|
rb v

n/b
2 . .
Tru(n,rc,b) = E {ng'Y + Tbcast(bzz c) + b3|- 1y + Tbcast(bzar) + b3|-
i=1

n—ib

— b
2 d -|7T)+Tbcast(b2|— rb -|:C)

+ Tbcast (b2 |—

108

www.manaraa.com

n—1ib, n—1ib
cb il rb

+ 2] 1y

where b equals block size nb, r and ¢ are the row and column dimensions of a two-dimensional
processor grid, i equals the iteration index, Theast(m, p) equals the cost of broadcasting m
items within p processors, and + is the cost of a floating-point operation.

While this expression can be easily evaluated, given a cost estimate for the broadcast,
it is typically useful to have a more compact estimate for the cost. For example, if one wanted
to dynamically choose between different implementations, a cheap estimate of the cost must
be available. Derivation of such an estimate is straightforward, but tedious and error-prone
if done by hand. Thus, we have created a prototype system employing Mathematica that
can take the script input and generate a cost estimate that is compact in form. However,
this estimate may not be of great informative value.

5.4.4 The Use of Mathematica Module[]s

Thus far, the performance characteristics have been discussed with little specificity about
what the annotations include or what form they take.

Since the focus of the discussion is limited to imperative languages, such as Fortran
and C, it seems that the level of the subroutine or procedure call is certainly the most
convenient location in which to place this annotative information. It should be pointed
out that functional supply (what the routine furnishes) and performance characteristics are
two separate ideas, but can both be viewed as meeting the requirements of a programmer.
Further, it is important to note that various language constructs (selectors, loops, etc.) can
be thought of as meta-subroutines. Combining a loop with a routine creates a new routine
with different performance characteristics; characteristics that are calculable from the two
components involved.

5.4.5 Performance Estimates: Discrete Formulae

Discrete formulae arise from the analysis of the algorithms under study in this document. As
can be seen in Section 5.4.3, one possible analysis format is the result of summing together
all of the individual operation counts on a per-loop basis.

Why Discrete Formulae Arise

All commonly used modern computer architectures are discrete. It should not be surprising
that a model of these systems gives rise to discrete mathematical formulae.

Algorithms from the area of linear algebra, can also give rise to discretized equations
when one describes their complexity.

Problems with this Format

As we see above, the expression that results is somewhat unintelligible, cluttered as it is with
summations and ceiling functions. Such results tend to be difficult to interpret. They are

109

www.manaraa.com

also poor formats for determining performance profiles, especially when many parameters
may be varied simultaneously.

5.4.6 Closed-Form Expressions

While discrete analysis allows for accurate modeling, it tends to fall short in presenting the
user with understandable information. Typically, the lexically shorter approximations are
worked out by hand. The constants involved are tedious to calculate for various machine
architectures. In order to do so, it is often the case that a number of simplifying assumptions
are incorporated. It is sometimes the case that these assumptions have a great impact on
the reliability of the resulting formula. It is our goal to design the analysis system so that
the task is eased and this impact is minimized.

A Numerical (a.k.a. A Statistical) Treatment

Of course, a number of data points from discrete analysis can be taken as guides for such
things as a least squares fit to a function of a known degree and form. While determining
this degree is not always simple, it is usually reasonably straightforward because of known
algorithmic complexity properties. Using modern tools such as Mathematica or Matlab, the
difficulty is less in the determination of a line of best fit than in giving meaning to the
coefficients that describe that line. The current state of the PLANALYZER system is such
that that these equations can be generated, but the coefficients have no explicit connection
to the parameters of the procedure analyzed.

Highly Simplified Models

Because the analytical system is symbolic, it is relatively straightforward to generate closed-
form results by sacrificing accuracy. For example, instead of computing the time taken to
perform operation X, the analytical engine can count the number of times operation X
would be called and produce a result of the form #X. The same idea can be used to yield
counts of different categories of functions, counts of functions that run at some percent
of the processors peak rate, etc. While this form is not what is typically referred to as
“closed,” there are cases where this might provide more useful information to the developer.
For example, if the programmer is attempting to move operations from level-2 to level-3
BLAS, it would likely be beneficial to determine if various changes to the code were having
the desired effect. The method outlined above would automate that process.

5.4.7 More Practical Concerns

Some issues only have a place when the discussion is grounded in implementation. Those
issues are presented, briefly, here.

110

www.manaraa.com

Viewing the Processor Set

There are two ways that one can view the processor set when it comes to the analysis of an
algorithmic implementation:

e unified and
e component-wise

The view of the processor set as unified ignores the individual differences between
the processor’s work sets as well as any difference between the component processors. The
latter simplification may be considered harmless because heterogeneous computer systems
are not considered in this document because of the complexity that their design inflicts on
any such analysis [13].

There are a number of approaches to unified processor modeling. The approach
used in the prototype system presented here could be called “single-case” based. The PL-
ANALYZER determines the best/worst/average complexity during any given step of the
computation (where a step may be defined to any level of granularity) and sums up these
steps, in whatever manner, to yield the result. Many other approaches are possible. One
such approach would be interval-based. Such a system keeps track of a set of cases (e.g.
best and worst) and calculates not a single cost, but the interval over which the costs may
range. The approach that we selected seemed capable of providing the information required
and is more typical of the analyses traditionally seen in the area.

The single-case based model also appeared to be the most appropriate as our interest
was in constructing a proof-of-concept system that addressed the complexity of the critical
path of the code/architecture under consideration. Therefore, modeling those algorithmic
steps that would likely prove bottlenecks in the execution of the code was the foremost
concern. As can be seen by studying the results presented in Section 5.6 this strategy
can yield highly accurate results when many operations are global and involve collective
communications. In such cases, determining the steps along the critical path can be done
via the use of a model that lacks much of the detail that would be required to mirror the
underlying library with total accuracy.

5.4.8 Load Balance

The analysis scheme should have the ability to deal with load balance. This is not to say
that it should do anything about fixing existing load imbalances past revealing them to the
designer.

The term “load imbalance” is typically taken to mean raw computational imbal-
ance. In other words, different processors have different operation counts. This is a valid
interpretation of the term, but the meaning of the term can be extended in a number of
ways.

One of the chief sources of optimization difficulties is the insufficient refinement of
processor timing differences. While very high-level abstract machine models do not evince

111

www.manaraa.com

operation speed differences, useful ones usually do. Therefore, the analyzer must model
not only the number of (basic) operations done, but also the (relative) speed at which
the target architecture is capable of doing them. This can be done by a very detailed
modeling of the underlying architecture, specifically the memory hierarchy and timing, or
through the creation of a base set of operators that facilitate the exposure of these timing
imbalances. The work outlined here takes the latter approach; championing the use of a
(flexible) framework so that these different “kernel” rates and complexities may be specified.

In addition to allowing the proper level of performance resolution, the analysis sys-
tem requires the ability to refine the view of the processors. It is important to note that
this does not mean that the analyzer must “imitate” the processors in a lockstep fashion.
As in the case of the kernel complexities, it is important that the design system allow the
user to tune the specificity of their input to match the detail level that they require in the
analysis system’s output for at least two reasons. First, it requires extra work to provide
succinct information when the analysis engine is provided with a highly detailed system
“map.” Second, it is impossible for the analysis to provide highly accurate feedback if the
information provided is at too high a level. The latter is not surprising, but it is important
that the former be pointed out because it often takes computational and programing effort
for an automated analysis tool to disregard information provided to it.

5.5 Related Work

Many of the papers in this area are almost exclusively empirical in their treatment of the
presented algorithm(s) [33]. Such work presents an algorithm then discusses various issues
that revolve around a coded instance of the algorithm under consideration along with some
real-world experimental (timing) results. Often, work that is more scholarly discusses the
presented algorithms in terms of such things as complexity measures. These are often
followed by empirical results as “proof” of the correctness of the more abstract resultant
formulae [24, 70, 31, 53].

5.5.1 Monolithic Analysis

The analysis of individual routines is often done in something of a vacuum. Usually, this
approach is taken when one’s goal in analyzing an algorithm is to obtain maximum accuracy.
By viewing the algorithm under consideration as a unit, all of the computational issues can
be tackled in order to yield an accurate reflection of the performance of the algorithm. The
downside of this approach is that it gives little leverage for tackling the next analysis task.

5.5.2 Ad-hoc/Component Sums Based Analysis

At the opposite end of the spectrum is the component-sums approach to analysis. This
approach simply glues together the results of the analysis of the pieces comprising the
overall algorithm. This allows for the rapid synthesis of analytical components, but the
manner in which these components interact is not modeled and often difficult to determine.

112

www.manaraa.com

5.6 Experimental Results

In Section 4.4, a number of variants and versions of the LU factorization algorithm were
presented along with a discussion regarding the code generated by the PLANALYZER. In
this section, the same intermediate-language form that is translated into C code is instead
transformed into a form of code that serves to model the performance characteristics of the
resultant program as it executes on the target architecture.

5.6.1 Automated Analysis Generation

The analysis presented in this experimental section is numeric, not symbolic, in nature,
as it would require a good deal of analysis effort on the part of the author to determine
whether the analysis was correct in the latter case. In order to evaluate the accuracy of the
performance estimates generated by the analysis engine, it was most expedient to compare
the numerical estimates generated with the witnessed empirical performance on the target
architecture.

In essence, the analytical engine works by executing the analysis scripts that are
generated along with the executable code. The performance estimates for the leaves of the
PFLAMBE software architecture were the result of a great deal of experience with the code-
generation system and the computational environment under study, but were not as precise
as benchmarks would have been. However, this level of detail would allow for a more rapid
alteration of the analysis engine so as to produce symbolic results, so was left as is. As we
can see in the next subsection, the estimates accurately reflect the performance of smaller
problems as well as illustrating performance trends for each of the cases examined.

5.6.2 Analysis vs. Witnessed Performance

In all cases of comparison between estimated and witnessed performance included here, tests
were performed on an 80 node Cray T3E (lonestar.hpc.utexas.edu). While the algorithms
would have run on non-square computational grids, only square grids of sizes 2 x 2, 4 x 4,
and 8 x 8 were tested. The same tests were performed in all cases with a few provisos. The
global size of the (square) matrices tested ranged from order 32 to order: 4096, 8192, and
16384 for the 4, 16, and 64 node cases, respectively. However, due to resource limitations,
some of the computationally inefficient algorithms were not tested with the largest matrix
sizes. The analytical system would have predicted the timeouts that occurred (one is given
a maximal allotted time when one submits a job to the T3E), but it was not used for this
purpose.

First, let us examine the predicted and witnessed performance of the five variants
listed in Section 4.4. These results are depicted in line-graph form in Figure 5.6, Figure 5.8,
and Figure 5.10 and in bar chart form in Figure 5.7, Figure 5.9, and Figure 5.11. The shade
of the bar indicates the quality of the estimation, with black being used if the estimates are
more than 20% off, gray for 10%-20% off and white for an error of less than 10%.

113

www.manaraa.com

Pred fTested

CLasy

L[1Matrix Size
—-# -~ RCLasy

Figure 5.6: Ratio of predicted to achieved performance: 4 node Cray T3E

Predicted /Empirical Performance: 4 node Cray T3E

2048

Figure 5.7: Bar graph indicating ratio of predicted to achieved performance for 4 node Cray
T3E. From left-to-right the bars correspond to the Eager, Lazy, Row Lazy, Column Lazy,
and Row-Column Lazy implementations.

114

Ol LAC U Zyl_ﬂbl

www.manaraa.com

Pred Tested

———— Lager

-—-#-— Bllasy

L[] Matrix Size

Figure 5.8: Ratio of predicted to achieved performance: 16 node Cray T3E

Predicted/Ermpivical Perforraance: 16 node Cray T3Ewl

0s

Figure 5.9: Bar graph indicating ratio of predicted to achieved performance for 16 node
Cray T3E. From left-to-right the bars correspond to the Eager, Lazy, Row Lazy, Column
Lazy, and Row-Column Lazy implementations.

115

www.manaraa.com

oL fyl_llsl

Fred [Tested
4

35

25

0.5

———— Eager

<= RfLasy

Laf] Matrix Size

Figure 5.10: Ratio of predicted to achieved performance: 64 node Cray T3E

Fredicted/Empirical Performance : 64 node Cray T3E w1

Figure 5.11: Bar graph indicating ratio of predicted to achieved performance for 64 node
Cray T3E. From left-to-right the bars correspond to the Eager, Lazy, Row Lazy, Column
Lazy, and Row-Column Lazy implementations.

116

www.manaraa.com

Now, we review the graphs corresponding to the ratios of predicted/achieved per-
formance for the four building-block algorithms (eagerl, eager2, eager4, and eager5) and
examine the same information regarding those routines that utilize these components (ea-
ger3a, eager3b, eagerba, eager6b, and eager6c).

Figure 5.12, Figure 5.13, and Figure 5.14) indicate the performance of the building-
blocks described in Section 4.4, while Figure 5.15, Figure 5.16, and Figure 5.17 utilize these
building blocks as their subcomponent LU factorization.

Pred /Tested

5

4node Cray TIE

———— Eagezl

\—-—m—.—. Eagezd

0x

0 ———ee__ Eagers

02

Matrin Size
1000 2000 3000 4000

Figure 5.12: Building blocks algorithms. Ratio of predicted to achieved performance: 4
node Cray T3E

5.6.3 Experiments: A Summary

The studies in this chapter were intended to demonstrate the utility of FLAME as a method
in the context of the entire environment. While Section 2.8.3 gave evidence that supported
FLAME'’s usefulness as both a practical and pedagogical tool, the results given here are
intended to lend support to the idea that much of the FLAME method can be automated
and that such mechanization would prove useful.

This chapter also supplied evidence supporting the soundness of the concepts behind
the PLANALYZER. The automated part of the system proved capable of:

1. Creating many code instances from the same script input.
2. Generating code instances that utilized hand-made script specializations.
3. Accurately determining the performance characteristics of a number of code instanti-

ations.

117

www.manaraa.com

Pred Tested

&

16 node CrayT3E

17 P“
..r‘.
| — + Eagesl
1. =
12
,,,,,,,, Eageci
q —y
+—-—m—--—. Eagerd
i
i ——-—t——— Eage:$

Ilatrix Size
2000 4000 4000 2000

Figure 5.13: Building blocks algorithms. Ratio of predicted to achieved performance: 16
node Cray T3E

Pred fTested

4

64 node Cray TZE

— + Eagerl

................. Eagezt
1. \

~— —-m-—-—: Dagerd

Iifatrix Size

2500 5000 1500 10000 12500 15000

Figure 5.14: Building blocks algorithms. Ratio of predicted to achieved performance: 64
node Cray T3E

118

www.manaraa.com

Pred Tested

4

4node CrayT3E

———— Eagezla
- Eagez?b

2
it -~ @ —- Bagezfa
1 ———i___ Eagezéb

e ——

1

<—-#.— Eagezfc

Ilatnx Size
1000 2000 3000 4000

Figure 5.15: Algorithms utilizing building blocks. Ratio of predicted to achieved perfor-
mance: 4 node Cray T3E

Pred /Tested 16 node CrayTIE

———— EagerfZa

4
i | T T L R Eagerlb
-—.--—.- Eagsrfa
———=——- EBagezfb

i
B et e -—--#--— Bagerfc

o
1

MatrixSize

2000 4000 6000 2000

Figure 5.16: Algorithms utilizing building blocks. Ratio of predicted to achieved perfor-
mance: 16 node Cray T3E

119

www.manaraa.com

Pred /Tested

64 node Cray TZE
4
£
|
| ——+— TagerZa
d
H
!
e
il <ieimeinis Bagerdb
=
” b
o]
- [| | (A .o
- S - Lagerfa
1 i Sy e |
Tty _____"‘“""l*q‘.."::;?,_:_,—‘—_—.:ﬁ_._u—-_;—_ ----- bl |
et T O P — from—m
: 5 e
P R P A . uemren i e e A Lagerth
0.
Ilatrix Size

2500 5000 7500 10000 12300 15000

Figure 5.17: Algorithms utilizing building blocks. Ratio of predicted to achieved perfor-
mance: 64 node Cray T3E

4. Using this information to hybridize a set of variants and/or version to achieve superior
performance.

As these three goals are important when one is constructing scientific libraries, we
think that the prototype holds up well as a proof-of-concept. Within the PLANALYZER,
the performance models could be refined to give results that are more accurate or extended
to give results that are more meaningful.

5.7 Chapter Summary

As has already been discussed in this chapter, performance is usually a sought after charac-
teristic in linear algebra codes. In the case of library codes, this quality is even more highly
prized because performance is far more important in the case of an often-invoked routine
than in the case of a routine that is executed only a few times.

Of course, while the typical measure of performance is speed (i.e. the length of time
the routine requires in order to execute), there are often other concerns. In some cases it
is not just desirable, but wvital to have a small memory footprint. Since there are many
other axes by which “quality” can be measured, the tools should be capable of handling an
assortment of metrics. Because of the details of implementation, this work can be extended
to handle such things. Further, the unified nature of the development system facilitates

rapid revision and specialized optimizations.

120

www.manaraa.com

Chapter 6
Conclusion

Given a limited amount of time and/or a language that is not domain-specific and inflexible,
it is often the case that one has to settle for the realization of less ambitious algorithms,
little or no hybridization, one-of-each routines (i.e. a monolithic software structure), and
deal with problems in cross-platform transportability.

There are time and financial penalties involved when one utilizes inefficient code.
Often, there is a potential trade-off; greater resources can be devoted to a problem in order
to bolster the shortcomings of the computational system. These can be in the form of human
or machine resources. However, trade-offs are sometimes unavailable and are often costly.

In this dissertation, we present evidence that it is possible to create a development
system that helps one in dealing with these problems. In this chapter, we present, by topic,
the problems addressed and lessened by the approach and implementation described here.

6.1 Design: FLAME

While it is the only step in the development process that is not automated, the design phase
is the core of the system. By deriving algorithms in a systematic manner and expressing
them in a regimented form, we have the basis for automating the rest of the system. This
methodology and the relatively uniform nature of the resultant algorithmic depictions fa-
cilitate the generation of multiple routines with the same functionality and, therefore, an
easier path to such things as algorithmic hybridization.

Similarly, targeting specific levels of a computational system by applying small mod-
ifications to a uniform approach allows for vertical integration. It facilitates analysis since
similar annotations are applicable to similar routines throughout the hierarchy. Example
areas where this methodology has shown its efficacy range from the bottom of the memory
pyramid with ITXGEMM, through PFLAMBE, to the top, POOCLAPACK, a parallel,
distributed, out-of-core library.

One example of an area where FLAME might prove useful in the future involves the
use of recursive data structures for storing matrices [48, 4, 46, 49]. By storing matrices by

121

www.manaraa.com

blocks rather than row- or column-major ordering, data reuse in caches can be enhanced.
By combining this with recursive algorithms that exploit this data structure, impressive
performance improvements have been demonstrated. Recently, work at IBM’s T.J. Watson
research center and The University of Umea have shown the utility of a specific type of
hierarchical descriptor/storage format for matrices, namely recursive structures that go
hand-in-hand with recursive algorithms [29, 46].

The crux of the design philosophy, as it relates to performance is that there are two
important characteristics of modern, parallel computers: computation and communication.
Virtually, all performance gains occur in the optimization of a computational or a commu-
nication routine when we view things “in the small.” In a library built upon routines that
ultimately rely on a very small matrix-matrix multiply kernel, virtually all of the speed-up
stems from careful memory subsystem management. When considering an out-of-core li-
brary, there are more layers of memory to manage and the FLAME philosophy has been a
great aid in the construction of such libraries.

Many aspects of the derivational approach we have described are systematic: the
generation of the loop-invariants, the derivation of the algorithm as well as the translation
to code. However, while we have much evidence to suggest that mechanizing the process is
achievable, there is much work ahead.

We have demonstrated that the system presented in this document fulfills its po-
tential by discussing how the technique has been applied to different computational envi-
ronments.

6.2 Language: PLAWright

The end-user, using FLAME, should be able to encode algorithms rapidly, while introducing
few errors. Both of these issues are addressed by having a programming language that
is syntactically similar to the language of design. If the designer and the programmer
are one and the same, this “proximity” is useful because it minimizes the possibility of a
mistranslation between the two forms of the algorithm. If the implementor and designer are
two distinct entities, this resemblance of form has an additional advantage, namely, lessening
the likelihood of a misinterpretation of the design before it is translated into input for the
system.
Encapsulated, the benefits of the PLAWright programming language are:

1. Tt closely resembles the language of the algorithms.
2. Tt can be written at a very high level or at a lower level.
3. The transition from general to specialized is both smooth and flexible.

4. Tt can be described using typical compiler formalizations.

122

www.manaraa.com

6.3 Automated Code Generation: PLANalyzer

Typically, the construction of a linear algebra library requires the implementation of a large
number of algorithms. The derivation process advanced in this work is applicable to those
algorithms at the core of dense linear algebra, exhibits a systematic nature that lends itself
to rapid derivation, and produces algorithms in a form that can be mechanically translated
into input for the PLANALYZER code production tool. Similarly, the code manufacturing
system can address the same spectrum of algorithms as the derivation system, is mechanical,
and is relatively fast. Therefore, algorithmic coverage can be quickly achieved by one familiar
with the derivation methodology.

In the best of all possible worlds, the automatically generated code would also be
provably correct. Given the formal approach provided by FLAME and the nature of the
code generation facilities presented in Chapter 4 of this dissertation, we think that this is
possible for the domain-specific language presented in Chapter 3.

A domain-specific language provides a set of high-level operations that are conve-
nient for a specific domain. If we formalize the syntax and semantics of a domain-specific
language, then we can use formal methods to prove that a program written in a domain-
specific language is correct. That the implementation of the domain-specific language is
correct is an orthogonal issue, related to low-level compiler verification, and ably handled
by others.

Towards this end, a collaborative effort with Dr. Panagiotis Manolios targets the
following;:

1. Proving that for any PLAWright code, the PLANALYZER'’s output is a legal PLA-
PACK program with the same semantics as that of the input script.

2. Applying tactic-based theorem proving to construct a system that utilizes both the
input and output of the integrated PLANALYZER system and, on a per instance
basis, creates proofs of correctness.

6.4 Automated Analysis: plANALYZER

Performance is one of the paramount concerns in the area of linear algebra library construc-
tion. There are three interrelated facets of this issue that need to be dealt with: modeling the
environment, evaluating the performance estimates, and using the result of the evaluation.
All three issues have been dealt with by the system described in this dissertation.

It is rarely the case that the code that achieves optimal performance on one archi-
tecture will perform as admirably on another. It is therefore a common goal to have code
that is performance portable across various systems. The work presented here includes the
use of a high-level language in conjunction with analysis technology. This facilitates the
production of performance transportable code.

123

www.manaraa.com

6.5 An Integrated System: FLAME and PLANALYZER

To construct a linear algebra library one must design and implement the algorithms that
must be available to the library user and make them as efficient as possible. FLAME
provides a systematic means for deriving the variants of such algorithms. The PLAWright
compiler allows for rapid prototyping. Automatic generation of the code corresponding to
the PLAWright script is handled by the compiler (PLAN) component of the PLANALYZER.
Finally, the analytical (ANALYZER) component of the system yields information regarding
the performance characteristics of the produced code, opening the door for hybridization.

We have explored the development of all of the concepts and tools necessary for a
methodical hybridization of a linear algebra library and believe that we have made a strong
case for the soundness of the approach presented in this dissertation.

124

www.manaraa.com

[1]

[2]

Bibliography

R.C. Agarwal, F.G. Gustavson, and M. Zubair. Exploiting functional parallelism of
POWER2 to design high-performance numerical algorithms. IBM Journal of Research
and Development, 38(5), Sept. 1994.

Philip Alpatov, Greg Baker, Carter Edwards, John Gunnels, Greg Morrow, James
Overfelt, Robert van de Geijn, and Yuan-Jye J. Wu. PLAPACK: Parallel linear algebra
package — design overview. In Proceedings of SC97, 1997.

B. Alpern and L. Carter. Performance programming: A science waiting to happen,
1994.

Bjarne S. Andersen, Fred G. Gustavson, and Jerzy Wasniewski. A recursive formalation
of Cholesky factorization of a matrix in packed storage. LAPACK Working Note 146
(CS-00-441, University of Tennessee, Knoxville, May 2000.

E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-
marling, A. E. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
STAM, Philadelphia, 1992.

E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau,
and R. van de Geijn. Basic Linear Algebra Communication Subprograms. In Sizth Dis-
tributed Memory Computing Conference Proceedings, pages 287-290. IEEE Computer
Society Press, 1991.

Greg Baker, John Gunnels, Greg Morrow, Beatrice Riviere, and Robert van de Geijn.
PLAPACK: High performance through high level abstraction. In Proceedings of
ICCPY8, 1998.

S. Balay, W. Gropp, L. Mclnnes, and B. Smith. Efficient management of parallelism
in object oriented numerical software libraries, 1997.

Satish Balay, William Gropp, Lois Curfman Mclnnes, and Barry Smith. PETSc 2.0
users manual. Technical Report ANL-95/11, Argonne National Laboratory, Oct. 1996.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, , and H. van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition. STAM, 1996.

125

www.manaraa.com

[11] J. Bilmes, K. Asanovic, C.W. Chin, and J. Demmel. Optimizing matrix multiply using
PHiPAC: a portable, high-performance, ANSI C coding methodology. In Proceedings
of the International Conference on Supercomputing. ACM SIGARC, July 1997.

[12] Walter R. Bischofberger. Sniff: A pragmatic approach to a c++ programming environ-
ment. In C++ Conference, pages 67-82, 1992.

[13] L. S. Blackford, A. Cleary, J. Demmel, J. Dongarra, I. Dhillon, S. Hammarling, A. Pe-
titet, H. Ren, K. Stanley, , and R. C. Whaley. Practical experience in the dangers of
heterogeneous computing. ACM Trans. Math. Soft., to appear.

[14] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Whaley. A
proposal for a set of parallel basic linear algebra subprograms. LAPACK Working Note
100 CS-95-292, University of Tennessee, May 1995.

[15] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. Scalapack: A scalable linear
algebra library for distributed memory concurrent computers. In Proceedings of the
Fourth Symposium on the Frontiers of Massively Parallel Computation, pages 120-127.
IEEE Comput. Soc. Press, 1992.

[16] Gene Cooperman. STAR/MPI: Binding a parallel library to interactive symbolic al-
gebra systems. In International Symposium on Symbolic and Algebraic Computation,
pages 126-132, 1995.

[17] Bimillennium Corporation. Hiq reference manual, version 2.0, 1993.

[18] P. D. Crout. A short method for evaluating determinants and solving systmes of linear
equations with real or complex coefficients. Trans AIEE, 60:1235-1240, 1941.

[19] L. DeRose and D. Padua. A matlab to fortran 90 translator and its effectiveness. In
Proceedings of the 10th ACM International Conference on Supercomputing, 1996.

[20] Luiz Antonio DeRose. Compiler Techniques for MATLAB Program. PhD thesis, Com-
puter Sciences Department, The University of Illinios at Urbana—Champaign, 1996.

[21] Edsger Wybe Dijkstra. Under the spell of Leibniz’s dream. Tech-
nical Report EWD1298, The University of Texas at Austin, April 2000.
http://www.cs.utexas.edu/users/EWD/.

[22] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users’ Guide.
STAM, Philadelphia, 1979.

[23] J. J. Dongarra, F. G. Gustavson, and A. Karp. Implementing linear algebra algorithms
for dense matrices on a vector pipeline machine. SIAM Review, 26(1):91-112, Jan.
1984.

[24] Jack Dongarra, Robert van de Geijn, and David Walker. Scalability issues affecting the
design of a dense linear algebra library. J. Parallel Distrib. Comput., 22(3), Sept. 1994.

126

www.manaraa.com

[25] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3
basic linear algebra subprograms. ACM Trans. Math. Soft., 16(1):1-17, March 1990.

[26] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An
extended set of FORTRAN basic linear algebra subprograms. ACM Trans. Math.
Soft., 14(1):1-17, March 1988.

[27] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and Henk A. van der Vorst. Solving
Linear Systems on Vector and Shared Memory Computers. STAM, Philadelphia, PA,
1991.

[28] C. Edwards, P. Geng, A. Patra, and R. van de Geijn. Parallel matrix distributions:
have we been doing it all wrong? Technical Report TR-95-40, Department of Computer
Sciences, The University of Texas at Austin, 1995.

[29] E. Elmroth and F.G. Gustavson. Applying recursion to serial and parallel QR factor-
ization leads to better performance. IBM J. Res. Develop., 44(4):605-624, 2000.

[30] Kathi Fisler, Shriram Krishnamurthi, and Don Batory. Verifying component-based
collaboration designs. In ICSE Workshop on Component-Based Software Engineering,
page to appear, May 2001.

[31] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems
on Concurrent Processors, volume I. Prentice Hall, 1988.

[32] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh. Parallel algorithms for dense linear
algebra computations. SIAM Review, 32(1):54-135, 1990.

[33] Gene Golub and James M. Ortega. Scientific Computing: an Introduction with Parallel
Computing. Academic Press, 1993.

[34] Gene H. Golub and Charles F. Van Loan. Matriz Computations. The Johns Hopkins
University Press, Baltimore, 2nd edition, 1989.

[35] John W. Gray. Mastering Mathematica Programming Methods and Applications. Aca-
demic Press, 2nd edition, 1997.

[36] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Texts and
Monographs in Computer Science. Springer Verlag, 1992.

[37] William Gropp. An introduction to performance debugging for parallel computers.
Technical report.

[38] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. The MIT Press, 1996.

[39] J. A. Gunnels, D. S. Katz, E. S. Quintana-Orti, , and R. A. van de Geijn. Fault-
tolerant high-performance matrix multiplication: Theory and practice. In International
Conference on Dependable Systems and Networks, 2001.

127

www.manaraa.com

[40] John Gunnels, Calvin Lin, Greg Morrow, and Robert van de Geijn. A flexible class of
parallel matrix multiplication algorithms. In Proceedings of First Merged International

Parallel Processing Symposium and Symposium on Parallel and Distributed Processing
(1998 IPPS/SPDP ’98), pages 110-116, 1998.

[41] John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. Formal Linear Algebra
Methods Environment (FLAME): Overview. FLAME Working Note #1 CS-TR-00-28,
Department of Computer Sciences, The University of Texas at Austin, Nov. 2000.

[42] John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. A family of high-
performance matrix multiplication algorithms. In Vassil N. Alexandrov, Jack J. Don-
garra, Benjoe A. Juliano, René S. Renner, and C.J. Kenneth Tan, editors, Computa-
tional Science - ICCS 2001, Part I, Lecture Notes in Computer Science 2073, pages
51-60. Springer-Verlag, 2001.

[43] John A. Gunnels and Robert A. van de Geijn. Developing linear algebra al-
gorithms: A collection of class projects. Technical Report CS-TR-01-19, De-
partment of Computer Sciences, The University of Texas at Austin, May 2001.
http://www.cs.utexas.edu/users/flame/pubs.html.

[44] John A. Gunnels and Robert A. van de Geijn. Formal methods for high-performance
linear algebra libraries. In Ronald F. Boisvert and Ping Tak Peter Tang, editors, The
Architecture of Scientific Software, pages 193—210. Kluwer Academic Press, 2001.

[45] Brian C. Gunter, Wesley C. Reiley, and Robert A. van de Geijn. Parallel out-of-core
cholesky and qr factorizations with pooclapack. In Proceedings of the 15th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE Computer Soci-
ety, 2001.

[46] F. Gustavson, A. Henriksson, I. Jonsson, B. Kagstrém, and P. Ling. Recursive blocked
data formats and BLAS’s for dense linear algebra algorithms. In B. Kagstrom et al.,
editor, Applied Parallel Computing, Large Scale Scientific and Industrial Problems,
Lecture Notes in Computer Science 1541, pages 195-206. Springer-Verlag, 1998.

[47] F. Gustavson, A. Henriksson, I. Jonsson, B. Kagstrom, and P. Ling. Superscalar
GEMM-based level 3 BLAS — the on-going evolution of a portable and high-performance
library. In B. Kagstrom et al., editor, Applied Parallel Computing, Large Scale Scien-
tific and Industrial Problems, Lecture Notes in Computer Science 1541, pages 207-215.
Springer-Verlag, 1998.

[48] F.G. Gustavson. Recursion leads to automatic variable blocking for dense linear-algebra
algorithms. IBM Journal of Research and Development, 41(6):737-755, November 1997.

[49] F.G. Gustavson and I. Jonsson. Minimal storage high-performance Cholesky factor-
ization via blocking and recursion. IBM J. Res. Develop., 44(6):823-850, November
2000.

128

www.manaraa.com

[50] S. Guyer and C. Lin. Broadway: A software architecture for scientic computing, 2000.

[51] Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software
libraries. In Domain-Specific Languages, pages 39-52, 1999.

[52] B. Kagstrom, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High performance
model implementations and performance evaluation benchmark. TOMS, 24(3):268-302,
1998.

[53] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing:
Design and Analysis of Algorithms. Benjaming-Cummings, 1994.

[54] William Jalby Kyle A. Gallivan, Bret A. Marsolf and Ahmed H. Sameh. On the
development of libraries and use in applications. CSRD Report 1341, Center for Su-
percomputing Research and Development, University of Illinois, May 1995.

[55] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra
subprograms for Fortran usage. ACM Trans. Math. Soft., 5(3):308-323, Sept. 1979.

[56] J. Li, A. Skjellum, and R. D. Falgout. A poly-algorithm for parallel dense matrix
multiplication on two-dimensional process grid topologies. Concurrency: Practice and
Ezperience, 9(5):345-389, 1997.

[57] Bret Andrew Marsolf. Techniques for the Interactive Development of Numerical Linear
Algebra Libraries for Scientific Computation. PhD thesis, Computer Sciences Depart-
ment, University of Illinois at Urbana—Champaign, 1997.

[58] C. Moler, J. Little, and S. Bangert. Pro-Matlab, User’s Guide. The Mathworks, Inc.,
1987.

[59] Greg Morrow and Robert van de Geijn. A parallel linear algebra server for matlab-like
environments. In Proceedings of SC98, to appear.

[60] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: A portable “shared-
memory” programming model for distributed memory computers. pages 340-349, 1994.

[61] Terence Parr. Reference guide: Pccts and c++.

[62] Terence John Parr. An overview of SORCERER: A simple tree-parser generator. Tech-
nical report, 1994.

[63] M. Quinn, A. Malishevsky, N. Seelam, and Y. Zhao. Perliminary results from a matlab
compiler. In Proceedings of First Merged International Parallel Processing Symposium
and Symposium on Parallel and Distributed Processing (1998 IPPS/SPDP ’98), pages
81-87, 1998.

[64] Enrique S. Quintana, Gregorio Quintana, Xiaobai Sun, and Robert van de Geijn. Gauss-
jordan based matrix inversion and its parallelization. SJSC, submitted.

129

www.manaraa.com

[65] Enrique S. Quintana-Orti and Robert van de Geijn. Fast parallel kernels for selected
problems in control theory. In Ninth SIAM Conference on Parallel Processing for
Scientific Computing, 1999.

[66] Wesley C. Reiley. Efficient parallel out-of-core implementation of the Cholesky fac-
torization. Technical Report CS-TR-99-33, Department of Computer Sciences, The
University of Texas at Austin, Dec. 1999. Undergraduate Honors Thesis.

[67] Wesley C. Reiley and Robert A. van de Geijn. POOCLAPACK: Parallel Out-of-Core
Linear Algebra Package. Technical Report CS-TR-99-33, Department of Computer
Sciences, The University of Texas at Austin, Nov. 1999.

[68] B. T. Smith et al. Matriz Eigensystem Routines — EISPACK Guide. Lecture Notes in
Computer Science 6. Springer-Verlag, New York, second edition, 1976.

[69] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Don-
garra. MPI: The Complete Reference. The MIT Press, 1996.

[70] S. Stanley, Kendall. Execution time of symmetric eigensolvers. Technical Report CSD-
99-1039, 3, 1999.

[71] G. W. Stewart. Matriz Algorithms Volume 1: Basic Decompositions. STAM, 1998.

[72] Anne E. Trephethen, Vijay S. Menon, Chi-Chao Chang, Grezgorz J. Czajkowki, Chris
Myers, and Lloyd N. Trefethen. Multimatlab: Matlab on multiple processors. Technical
Report 96-239, Cornell Theory Center, 1996.

[73] Robert van de Geijn and Jerrell Watts. SUMMA: Scalable universal matrix multipli-
cation algorithm. Concurrency: Practice and Experience, to appear.

[74] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT
Press, 1997.

[75] George Karypis Vipin Kumar and Ananth Grama. Role of message-passing in per-
formance oriented parallel programming. In Proceedings of the Eighth SIAM Parallel
Processing Conference, 1997.

[76] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software.
In Proceedings of SC’98, 1998.

[77] Stephen Wolfram. The Mathematica Book: 3rd Edition. Cambridge University Press,
1996.

130

www.manaraa.com

Vita

John A. Gunnels was born in Long Beach, California on May 15, 1965, the son of Willis
Aaron and Margaret Mary Gunnels. He attended Redmond High School, Central Ore-
gon Community College, Oregon State University, and The University of Illinois, Urbana-
Champaign before moving to Austin where he met Jen Moore at UT Austin in 2001. He
currently resides in Mt. Kisco, NY with his dog, Data.

Permanent Address: 85 Foxwood Circle
Mt. Kisco, NY 10549

This dissertation was set by the author using the IATEX 2¢ typesetting system.

131

www.manaraa.com

