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Abstra
tOver the last two de
ades, mu
h progress has been made in the area of the high-performan
e sequential and parallel implementation of dense linear algebra operations. Atwhat time 
an we 
on�dently state that we truly understand this problem area and whatform might eviden
e in support of this assertion take? It is our thesis that if we fo
us thisquestion on the software ar
hite
ture of libraries for dense linear algebra operations, we 
an
laim to have rea
hed the point where, for a restri
ted 
lass of problems, we understandthis area. In this dissertation, we provide eviden
e in support of this assertion by outlininga systemati
 and partially automated approa
h to the derivation and high-performan
eimplementation of a large 
lass of dense linear algebra operations.We have arrived at a 
on
lusion that the answer is to apply formal derivation te
h-niques from Computing S
ien
e to the development of high-performan
e linear algebra li-braries. The resulting approa
h has resulted in an aestheti
ally pleasing, 
oherent 
ode thatfa
ilitates performan
e analysis, intelligent modularity, and the enfor
ement of program 
or-re
tness via assertions. In this dissertation, we illustrate this observation by looking at thedevelopment of the Formal Linear Algebra Methods Environment (FLAME) for implement-ing linear algebra algorithms.We believe that traditional methods of implementation do not re
e
t the naturalmanner in whi
h an algorithm is either 
lassi�ed or derived. To remedy this dis
repan
y,we propose the use of a small set of abstra
tions that 
an be used to design and implementlinear algebra algorithms in a simple and straightforward manner. These abstra
tions maybe expressed in a s
ript language that 
an be 
ompiled into eÆ
ient exe
utable 
ode. Weextend this approa
h to parallel implementations without adding substantial 
omplexity.It should also be possible to translate these s
ripts into analyti
al equations thatre
e
t their performan
e pro�les. These pro�les may allow software designers to systemat-i
ally optimize their algorithms for a given ma
hine or to meet a parti
ular resour
e goal.Given the more systemati
 approa
h to deriving and implementing algorithms that is fa
ili-tated by better abstra
tion and 
lassi�
ation te
hniques, this sort of analysis 
an be shownto be systemati
ally derivable and automated.
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Chapter 1Introdu
tionOur 
laim is that it is possible to 
reate a system wherein one 
an 
ode dense linear algebraroutines in a very high-level, domain-spe
i�
 language and still attain near-peak perfor-man
e on distributed-memory parallel ar
hite
tures. This dissertation provides eviden
esupporting this 
laim and des
ribes the impli
ations of su
h a system. Our thesis 
an beexpressed as follows:� We have dis
overed how to systemati
ally derive a restri
ted 
lass of linear algebraalgorithms using formal derivation te
hniques.� For this 
lass of algorithms, 
ompiler tools 
an be employed to redu
e a domain-spe
i�
program to a list of operational requirements.� In this domain, requirements 
an be paired to the fun
tionality provided by a set oflibrary routines if the annotations used to express those servi
es are 
ompatible withthe requirements.� For this 
lass of algorithms, performan
e estimates of 
onstru
ted routines 
an bemade highly a

urate if the underlying library is layered 
orre
tly and the languageused to des
ribe performan
e 
hara
teristi
s is suitably 
exible.The domain under study in this dissertation is restri
ted to a subset of dense linearalgebra problems. This 
lass in
ludes the level-3 BLAS routines [25, 39℄, matrix fa
torizationroutines [44℄, and kernels involved in 
ontrol theory [65, 64℄. While this set of algorithmsdoes not 
over the gamut of dense linear algebra, it does 
omprise a useful, 
ore set.This 
hapter begins with an histori
al overview that summarizes the evolution oflinear algebra software libraries. This is followed by a brief treatment of the insights that ledus to the work presented here. We then explain how this work advan
es the state-of-the-art.After itemizing the 
ontributions of our resear
h, we present a summary of other resear
he�orts whose goals are similar to our own. The �nal se
tion of this 
hapter presents anoutline of the dissertation. 1
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1.1 MotivationAdvan
es in software engineering for s
ienti�
 appli
ations have often been led by te
h-niques developed for libraries for dense linear algebra operations. The �rst su
h pa
kageto a
hieve widespread use and to embody new te
hniques in software engineering was EIS-PACK [68℄. The mid-1970s witnessed the introdu
tion of the Basi
 Linear Algebra Subpro-grams (BLAS) [55℄. This version of the BLAS was a set of ve
tor operations (now known aslevel-1 BLAS) that allowed libraries to attain high performan
e on 
omputers possessing a
at memory while remaining portable between platforms. This library and its well-de�nedinterfa
e simultaneously enhan
ed 
ode modularity and readability. The �rst su

essfullibrary to exploit these BLAS was LINPACK [22℄.By the late 1980s, it was re
ognized that in order to over
ome the gap between pro-
essor and memory performan
e on modern mi
ropro
essors it was ne
essary to reformulatematrix operations in terms of level-2 (matrix-ve
tor multipli
ation) and level-3 (matrix-matrix multipli
ation-like) BLAS operations [26, 25℄. First released in the early 1990s,LAPACK [5℄ is a high-performan
e pa
kage for linear algebra operations. LAPACK is aportable library that provides a fun
tionality that is a superset of both LINPACK and EIS-PACK. The LAPACK library heavily utilizes the level-3 BLAS and evin
es high performan
eon essentially all sequential and shared-memory ar
hite
tures.A major simpli�
ation in the implementation of the level-3 BLAS stemmed fromthe observation that they 
an be 
ast in terms of optimized matrix-matrix multipli
ation [1,47, 52℄. The performan
e of the resulting libraries was 
omparable to that of the optimized,assembly-
oded, vendor-supplied BLAS in many 
ases. Further, the implementations weremore portable than previous BLAS libraries be
ause they were written in Fortran. In those
ases where the 
ode was not performan
e transportable (i.e. where these BLAS did not
ompile into eÆ
ient assembly 
ode), the ideas behind this resear
h simpli�ed the task ofhand-
oding the level-3 BLAS library.With the advent of distributed-memory parallel ar
hite
tures, LAPACK was nolonger suÆ
ient for the needs of high-performan
e s
ienti�
 
omputing. LAPACK workedwell with high-performan
e shared-memory systems, but was not written to be 
ompatiblewith distributed-memory ar
hite
tures. Distributed-memory ar
hite
tures depend upon theappli
ations and libraries to expli
itly manage the physi
ally distin
t memories atta
hed tothe 
omputational pro
essors (nodes) of the system. Thus, a parallel version of LAPACK,S
aLAPACK [15℄, was developed. A major design goal of the S
aLAPACK proje
t was topreserve and re-use as mu
h 
ode from LAPACK as possible. Thus, all layers in the S
aLA-PACK software ar
hite
ture were designed to resemble analogous layers in the LAPACKsoftware ar
hite
ture. This de
ision was motivated by the fa
t that LAPACK had provenitself both robust and eÆ
ient. However, this de
ision 
ompli
ated the implementation ofS
aLAPACK. The introdu
tion of data distribution a
ross memories 
reated a 
ompli
a-tion analogous to that of 
reating and maintaining the data stru
tures required for storingsparse matri
es. The mapping from indi
es to matrix element(s) was no longer a simpleone. Combining this 
ompli
ation with the monolithi
 stru
ture of the software led to 
ode2
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that was laborious to 
onstru
t and diÆ
ult to maintain.Re
ently, a number of proje
ts have developed software for generating automati-
ally tuned matrix-matrix multipli
ation kernels. These undertakings in
lude the PHiPACproje
t [11℄ and the ATLAS proje
t [76℄.The PHiPAC resear
h e�ort in
luded a 
areful analysis of C implementations ofmatrix-matrix multipli
ation. By stru
turing the loops and memory referen
es 
arefully,it is possible for a C 
ompiler to generate highly eÆ
ient 
ode for this algorithm. ThePHiPAC resear
h team produ
ed a software system 
apable of generating eÆ
ient BLASkernels through a generate-and-test strategy. This software generator 
reated implemen-tations of matrix multipli
ation algorithms that blo
ked matri
es in every reasonable way.By exe
uting these programs and monitoring the resulting performan
e, parameters for ahigh-performan
e matrix multipli
ation implementation 
ould be determined.The ATLAS proje
t repa
kaged and simpli�ed the methods developed in 
reatingthe PHiPAC system. In addition, the ATLAS system required less time to generate eÆ
ientlinear algebra kernels. This eÆ
ien
y was gained by avoiding PHiPAC's exhaustive sear
h ofthe parameter spa
e involved in determining optimal matrix blo
king sizes. Unfortunately,as this sear
h spa
e was redu
ed through experien
e, not by a theoreti
al model, it issometimes the 
ase that ATLAS produ
es 
ode with far less than optimal performan
e
hara
teristi
s [42℄.1.2 Our Approa
h1.2.1 Re
ent InsightsThe primary inspiration for mu
h of the work presented in this dissertation 
ame from ourexperien
e with the Parallel Linear Algebra Pa
kage (PLAPACK) [74℄. PLAPACK a
hievesa fun
tionality similar to that of S
aLAPACK, targeting the same distributed-memory ar-
hite
tures. In 
ontrast to S
aLAPACK, PLAPACK uses an MPI-like [38℄ approa
h to hideindexing and data distribution details.Work related to PLAPACK provided insights that motivated the approa
h presentedin Chapter 2 and Chapter 3 of this do
ument. Raising the level of abstra
tion at whi
h one
odes redu
es the e�ort involved in implementing high-performan
e linear algebra libraryroutines.As we gained more experien
e with PLAPACK, a number of themes kept reappear-ing:� The derivation of algorithms for di�erent linear algebra operations was systemati
.� Similarly, the analysis of the resulting algorithms was systemati
, although tediousand error-prone.� For a given linear algebra operation, di�erent algorithms provided better performan
eas the sizes of operands (matri
es) 
hanged [40℄. This makes analysis ne
essary in orderto be able to determine when and understand why di�erent algorithms are superior.3
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We dis
overed that, in deriving algorithms for a new operation, we were applying formalderivation methods to the domain of algorithms for dense linear algebra operations. Thisled to our work on the Formal Linear Algebra Methods Environment (FLAME), resear
hdetailed in Chapter 2.Linear algebra libraries are expe
ted to 
ontain routines that 
an deal with a broadrange of operational tasks and to be written in a form that 
an be ported between di�erent
omputational environments. The LAPACK library a
hieves both obje
tives by exploitingthe BLAS. However, the use of libraries su
h as LAPACK has the disadvantages of requiringthe appli
ations programmer to perform time-
onsuming, involved, sour
e 
ode optimiza-tions that are often not performan
e portable [50℄. The work presented in Chapter 3 andChapter 4 addresses this problem. By 
reating a language that allows the user to programat a level of abstra
tion higher than that of PLAPACK, little library knowledge is requiredof the programmer. An automated 
ode generation system a

epts programs written inthis language and produ
es 
ode that evin
es superior performan
e on distributed-memory,parallel super
omputers. This is a
hieved by me
hani
ally linking the high-level programsto a fun
tionally-annotated version of the PLAPACK library.A simple model of a distributed-memory parallel system is used for performan
eanalysis in Chapter 5. This model re
e
ts lessons learned while studying the issues relatedto the 
reation of high-performan
e matrix-matrix multipli
ation kernels for single pro
essorma
hines with hierar
hi
al memories [42℄. This 
ontrasts with 
ode generation e�orts su
has PHiPAC and ATLAS, whi
h employ brute for
e to sear
h a parameter spa
e for blo
kingsizes that a

ommodate multiple levels of memory hierar
hy.Together, these experien
es and insights led us to 
on
lude that for a subset of denselinear algebra operations, the derivation, implementation, and analysis of parallel algorithmsis now a well-understood and systemati
 pro
ess.1.2.2 A Solution: The Big Pi
tureThe goal of linear algebra 
ode produ
tion is to generate eÆ
ient 
ode from a 
lear state-ment of mathemati
al requirements. Our strategy for a
hieving this obje
tive is depi
tedin Figure 1.1. Spe
i�
ally, it is our aim to repla
e the \Human Expert" of Figure 1.2,whi
h re
e
ts where previous resear
h had led us, with systemati
 te
hniques and auto-mated tools. The term \eÆ
ient" 
overs a number of sub-goals in
luding reliability, speed,and transportability. These qualities are widely 
onsidered the primary value metri
s ofsu
h 
omputer 
odes. This dissertation targets the 
ommunity of s
ienti�
 library writers.Sin
e one might safely suppose that these resear
hers are mathemati
ians or have strongmathemati
al ba
kgrounds, the 
lear statement of mathemati
al requirements is a logi
alstarting point. The mathemati
al spe
i�
ation of the problem must be known in order togenerate 
ode to solve that problem. In order to automate a system, this spe
i�
ation,represented by \A = LU" in Figure 1.1, must be made expli
it.The uni�ed approa
h to the design and development of dense linear algebra algo-rithms that is presented in this do
ument should be distinguished from the situation whereindevelopment is ad ho
. When the development and tool sets are 
olle
ted, not designed as4
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Figure 1.1: The Big Pi
ture: As advan
ed in this dissertationpart of a holisti
 approa
h, they may supply as mu
h baggage as leverage to a problem-solving environment.Development MethodologyGiven a mathemati
al spe
i�
ation of the problem, it is bene�
ial to have a 
onsistent,methodologi
al approa
h that enables one to 
onstru
t an algorithm that satis�es this spe
-i�
ation. If the approa
h is broadly appli
able, it 
an be employed in the 
reation of theentire range of routines for a linear algebra library. If this methodology is systemati
, it maybe automated. In this dissertation, we present one su
h approa
h. FLAME is systemati
 innature. In addition, FLAME 
an be utilized to generate a number of di�erent algorithms,
alled variants, for the same mathemati
al problem spe
i�
ation.Library Management: A ComposerOne may 
reate a number of variants 
orresponding to the same mathemati
al spe
i�
ation.In order to automate 
ode generation, is useful to link together 
omponents that satisfy thesame mathemati
al spe
i�
ation. In the work presented here, they are linked through anno-tations that expose the similarities in their fun
tionality. This is the task of the \Composer."5
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Figure 1.2: The Big Pi
ture: As our resear
h group has viewed it.Input to the Composer is written in a high-level s
ript language 
alled PLAWright1. S
ripts
ontain both an algorithmi
 
omponent and the mathemati
al spe
i�
ation satis�ed by thats
ript. By annotating the s
ripts in this manner, the system 
an inter
hangeably use thoses
ripts with the same fun
tional 
hara
teristi
s.It is a widely held belief that any automated system should allow for expert in-tervention. PLAWright, the language of the Composer, allows for hands-on modi�
ations.These spe
ializations take the form of su
h things as data distribution dire
tives (in the
ontext of parallel ar
hite
tures), fun
tional overrides (for
ing the use a spe
i�
 library 
allor 
ode segment), and performan
e annotations (indi
ating the 
omputational 
omplexityof a 
omponent). In this dissertation, these spe
ialized forms of a given variant are referredto as s
ript versions. There is a single \vanilla," or plain, s
ript 
orresponding to a variant
onstru
ted via FLAME, but there may be many spe
ialized versions of that variant.Code Generation and AnalysisSin
e the goal of the pro
ess under 
onsideration involves the produ
tion of eÆ
ient 
ode,we 
ouple the 
ode produ
ed to an analysis pro
edure. By restri
ting our attention to the
onstru
tion of 
ode built on top of an existing library, the 
reation of su
h an analyti
al1We would like to thank Sam Guyer for both the PLAWright name and a prototypi
al example of thelanguage. 6



www.manaraa.com

engine be
omes a more pre
isely de�ned task.Given a single s
ript and a software library, there may be many ways to ful�ll therequirements of the s
ript with the servi
es provided by the 
omponent library routines.It is often the 
ase that di�erent 
ode instantiations exhibit di�erent 
omputational 
har-a
teristi
s. It is also often true that no one routine is best for all situations. Di�eringoperand dimensionalities and 
hara
teristi
s may make it ne
essary to dynami
ally sele
tfrom many di�erent routines in order to attain 
onsistently near-optimal performan
e. Thisis 
alled 
ode hybridization. It makes sense to 
ouple 
ode generation and analysis in orderto enable the produ
tion of hybridized 
ode that is eÆ
ient a
ross a wide range of probleminstan
es. This dissertation work presents the PLANALYZER, a 
oupled 
ode-produ
tionand 
ode-analysis system.The proof-of-
on
ept implementation des
ribed in this dissertation limits the algo-rithmi
 area to a subset of dense linear algebra, the 
omplexity measures to time, and theoutput language to C. However, this system 
an be extended to involve other 
omplexitymeasures (su
h as memory usage) or to target other languages (su
h as Fortran).1.3 Resear
h Contributions1.3.1 Systematizing DevelopmentWe have made systemati
 the derivation of a 
lass of linear algebra algorithms through theuse of simple formal derivation te
hniques. This advan
es the state-of-the-art by bringingformal derivation te
hniques to an area of software ar
hite
ture that has made little use ofthem in the past. Our methodology is referred to as FLAME. Further, we have 
reated aregimented stru
ture for the expression of FLAME algorithms. This stru
ture makes expli
itthe similarities and di�eren
es between 
losely related algorithmi
 variants. We have 
oupledthis with the Formal Linear Algebra Methods Building Environment (FLAMBE)2, whi
hallows one to en
ode the routines in a form that mirrors the resultant FLAME algorithms.FLAMBE 
ode 
an handle matrix 
omputations on both serial and parallel ma-
hines, with porting requiring only minor modi�
ations. Thus, our work eases e�orts re-quired to 
onstru
t a library that 
ontains routines that share fun
tionality, but addressdi�erent levels of the memory hierar
hy. This 
ategory of verti
ally integrated library isuseful in high-performan
e, distributed-memory parallel 
omputing.1.3.2 Domain-Spe
i�
 LanguagesWe have re�ned a domain spe
i�
 language, 
alled PLAWright, for the expression of denselinear algebra subroutines. We have also veri�ed that algorithms expressed in this language
an be 
ompiled into 
ode that exe
utes on a parallel ma
hine and into analyti
al 
ode thatre
e
ts the 
omplexity of the 
orresponding exe
utable. Additionally, we have 
reated aframework within whi
h impli
it assumptions regarding linear algebra algorithms are made2This library has been referred to as FLAME in other do
umentation [41, 44℄.7
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expli
it. Through PLAWright, we have 
reated a language that allows for rapid prototypingand optimization, improving upon languages su
h as PLAPACK and MATLAB by raisingthe level of abstra
tion without sa
ri�
ing performan
e.1.3.3 Automated Code and Analysis GenerationWe have 
onstru
ted an analyti
al model for homogeneous parallel 
omputers that is simple,pre
ise enough to meet our requirements, and appli
able to modern mi
ropro
essors 
om-monly used in the area of high-performan
e s
ienti�
 
omputation. This modeling e�ortprovided us with many insights into the design of a performan
e modeling language.Our system allows an individual, who either la
ks expert knowledge regarding thetarget ar
hite
ture or the underlying libraries, to produ
e routines with admirable perfor-man
e 
hara
teristi
s. The system we have 
reated a

omplishes this by utilizing expertknowledge, in the form of fun
tional annotations, to 
onstru
t a number of 
omparableprograms from a single input s
ript. In addition, this system is 
apable of analyzing theperforman
e 
hara
teristi
s of these implementations in order to fa
ilitate the sele
tion of thebest 
ode available from the produ
ed alternatives. Utilizing an analyti
al model representsan approa
h orthogonal to that of 
ode generators su
h as PHiPAC and ATLAS.1.4 Related Work: Integrated SystemsBelow is a dis
ussion of work related to \integrated systems" with goals similar to thoseaddressed by the work in this dissertation. In subsequent 
hapters, the \Related Work"se
tions in
lude resear
h e�orts that address the more narrow topi
 of that 
hapter.1.4.1 MultiMATLABThe MultiMATLAB proje
t attempted to take advantage of a large existing 
ode base andan integrated development environment [72℄. The philosophy of the proje
t was analogousto that underlying the S
aLAPACK proje
t [15℄. MultiMATLAB 
an utilize a number ofMATLAB pro
esses running on a set of pro
essors. When 
oupled with a 
ommuni
ationslibrary, this enabled a parallel s
ripting environment. In this environment, a programmer
an exe
ute a s
ript on the master pro
essor and utilize the 
omputational power of all ofthe pro
essors in the system.In 
ontrast to MultiMATLAB, the system presented in this dissertation addressesthe entire development pro
ess, from algorithmi
 development to 
ode generation and anal-ysis. Further, using our system results in 
ode that exhibits admirable performan
e 
hara
-teristi
s when exe
uted on a distributed-memory, parallel super
omputer.
8
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1.4.2 PSIThe PLAPACK-Server Interfa
e (PSI) proje
t [59℄ used an approa
h similar to that ofMultiMATLAB3. Built on the PLAPACK library, the PSI pa
kage allows one to run s
ripts,written in MATLAB [58℄, Mathemati
a [77℄, or HiQ [17℄, on the master pro
essor. Theses
ripts 
an use the PLAPACK library to handle the requisite parallel 
omputations whilethe system retains the ability to utilize the indi
ated 
omputational environment in the 
asethat:� PLAPACK does not supply the desired fun
tionality and� The problem 
an �t on a single node.Both MultiMATLAB and PSI allow the user to take advantage of the built-in graph-i
s 
apabilities of the indi
ated 
ommer
ial systems. The di�eren
e being that PSI 
an usethe graphi
s 
apabilities of a single node while MultiMATLAB has the ability to utilizethese graphi
s 
apabilities on all parti
ipating pro
essors.In 
ontrast to PSI, our system allows the user to program at a level of abstra
tionthat lies above that of the PLAPACK library. Further, unlike PSI, the resear
h presentedin this do
ument in
ludes algorithmi
 development and performan
e analysis.1.4.3 FALCONIn sharp 
ontrast to MultiMATLAB, the FALCON proje
t [20, 57, 19℄ resulted in a sys-tem 
apable of 
ompiling MATLAB 
ode into an eÆ
ient parallel exe
utable. It mightappear that a large part of the work underlying the FALCON system was made obsolete bythe 
ompiler now available from the 
ompany that 
reated MATLAB, The MathWorksTM.However, this may not be the 
ase. Parallel performan
e results are easy to get for theFALCON system while 
omparable �gures for MultiMATLAB [63℄ are diÆ
ult to lo
ate.However, it may be that the MultiMATLAB proje
t is far more interested in 
exibility thaneÆ
ien
y.Unlike the FALCON proje
t, our work addresses algorithmi
 development and, thus,presents an end-to-end development methodology.1.4.4 BroadwayThe Broadway Proje
t at UT Austin is an e�ort to automati
ally optimize both software li-braries and the appli
ations that utilize them [51, 50℄. This two-pronged approa
h is slightlydi�erent from the work presented in this dissertation. Broadway is primarily aimed at im-proving upon existing routines whereas the resear
h thrust of this dissertation drops ba
k tothe 
reation of the algorithms and the use of a new language. Further, Broadway 
an be ap-plied to libraries that do not involve s
ienti�
 
omputation, whereas the PLANALYZER (seeChapters 3{5) is tied to that domain. Finally, our resear
h takes a quantitative approa
h3A ta
ti
 �rst utilized by STAR/MPI [16℄. 9
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to the analysis and optimization of algorithms while Broadway's approa
h is qualitative innature, as be�ts a more wide-ranging tool.1.5 Overview of DissertationThis overview is intended to serve to remind the reader of the 
omponents under study inthis dissertation resear
h. Ea
h 
omponent builds upon the last, but no su

essor in thedevelopment pro
ess is entirely dependent upon its prede
essor. The result is a system thathas a \best of both worlds" 
avor; the tools fa
ilitate, but are not responsible for enabling,the next step in the pro
ess of development. The design methodology (FLAME) provides theunderlying stru
ture and philosophy for the rest of the system. The employment of FLAMEresults in algorithms of a spe
i�
 stru
ture. The next step in the pro
ess is the Composer,whi
h utilizes the PLAWright language. The Composer a

epts algorithms evin
ing thisstru
ture as input and may be used to spe
ialize them before library linkage is performed.At that point, the PLANALYZER system is used to generate 
ode and 
oupled analysisformulae through the use of an annotated library. Finally, the results of the PLANALYZERsystem 
an be used to 
reate hybridized 
ode.1.5.1 Design: FLAME (Chapter 2)The Formal Linear Algebra Methods Environment is a methodology that fa
ilitates thesystemati
 and formal derivation of dense linear algebra algorithms.The FLAME methodology is built upon the use of loop invariants, a fundamentalte
hnique of 
omputer s
ien
e. While it is no surprise that this sort of methodology resultsin provably 
orre
t algorithms, the te
hnique also allows for the 
reation of novel algorithms.There are many other bene�ts to this approa
h, and those are detailed in Chapter 2.The systemati
 nature by whi
h algorithms are derived with the FLAME philosophyis a strong indi
ator that this derivation pro
ess 
an be automated. Although su
h automa-tion is not a part of the resear
h presented in this dissertation, some eviden
e is o�ered insupport of the assertion that FLAME 
an be partially me
hanized. Me
hanization of thisstep would result in an end-to-end, me
hanized system for the 
reation of linear algebralibraries.1.5.2 A Domain-Spe
i�
 Language: PLAWright (Chapter 3)Intimately tied to the derivation of the algorithms is the language in whi
h one expressesthe resulting artifa
t. An e�ort was made to allow the language of the algorithms to bevirtually identi
al to the language of their implementation. FLAMBE is a step towards thisgoal, but it is not the �nal step, as Chapter 3, whi
h introdu
es the PLAWright language,demonstrates.
10
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1.5.3 Code Generation (Chapter 4)In this text, the term \
ode generation" may be 
onsidered roughly synonymous with fun
-tional 
omposition. Here, the 
entral issue is linking to a library providing fun
tional self-des
ription via annotations. The approa
h used to me
hanize linkage allows the di�erentlevels of the underlying library to be dealt with in a uniform manner.The other desirable properties of an automated system, su
h as 
exible library
oupling, produ
tion 
ode that re
e
ts spe
ializations in the high-level language, and high-performan
e 
odes based on little user dire
tion, are also evident in the system examined inthis do
ument. Chapter 4 is 
on
erned with fun
tional linkage issues while Chapters 4 and5 
ombine to deal with the automated produ
tion of high-performan
e 
ode.1.5.4 Performan
e (Chapter 5)In the area of s
ienti�
 
omputation, where linear algebra is a 
ornerstone, eÆ
ien
y is
ru
ial. In this 
hapter, we 
onsider the issue of performan
e as it relates to algorithmi
implementation. There are other interpretations of \performan
e" su
h as 
ode 
reationtime and the optimal use of the time and talent of human experts, but those are addressedelsewhere. The typi
al axes of quality in this �eld are the exe
ution time and spa
e requiredby exe
uting routines.Chapter 5 studies the issues pertinent to su
h 
on
erns: modeling, evaluation, hybridalgorithms, and the performan
e annotations that enable the automation of this pro
ess.1.5.5 Con
lusion (Chapter 6)Finally, a summary of the work and its 
ontributions to the area of linear algebra librarydevelopment is presented. Possible dire
tions for further study and future work are alsobrie
y dis
ussed.

11
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Chapter 2Systemati
 Derivation ofVariantsSin
e the advent of high performan
e, distributed-memory parallel 
omputing, the need forintelligible 
ode has be
ome ever greater. The development and maintenan
e of librariesfor these ar
hite
tures is simply too 
omplex to be amenable to 
onventional approa
hes toimplementation. Attempts to employ traditional methodology have led, in our opinion, tothe produ
tion of an abundan
e of anfra
tuous 
ode that is diÆ
ult to maintain and nighimpossible to upgrade.Having struggled with these issues for more than a de
ade, we have 
on
luded thatthe solution is to apply a te
hnique from theoreti
al 
omputer s
ien
e, formal derivation, tothe development of high-performan
e linear algebra libraries. We think that the resultingapproa
h results in aestheti
ally pleasing, 
oherent 
ode that fa
ilitates intelligent modular-ity and high performan
e while enhan
ing 
on�den
e in its 
orre
tness. Sin
e the te
hniqueis language independent, it lends itself equally well to a wide spe
trum of programming lan-guages (and paradigms) ranging from C and Fortran to C++ and Java. In this 
hapter, weillustrate our observations by looking at FLAME, a framework that fa
ilitates the derivationand implementation of linear algebra algorithms.2.1 Introdu
tionWhen 
onsidering the unmanageable 
omplexity of 
omputer systems, Dijkstra re
entlymade the following observations [21℄:(i) When exhaustive testing is impossible {i.e., almost always{ our trust 
an only be basedon proof (be it me
hanized or not).(ii) A program for whi
h it is not 
lear why we should trust it, is of dubious value.12
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(iii) A program should be stru
tured in su
h a way that the argument for its 
orre
tnessis feasible and not unne
essarily laborious.(iv) Given the proof, deriving a program justi�ed by it, is mu
h easier than, given theprogram, 
onstru
ting a proof justifying it.In this 
hapter, we make a number of 
ontributions to the development linear algebralibraries. These 
ontributions relate to the above observations as follows:� By borrowing from Dijkstra's own 
ontributions to 
omputing s
ien
e, we show howto systemati
ally derive families of algorithms for a given matrix operation.� The derivation leads to a stru
tured statement of the algorithms that mirrors how thealgorithms are often explained in a 
lassroom setting.� The derivation of the algorithms provides a proof of the 
orre
tness of the algorithms.� By implementing the algorithms so that the 
ode mirrors the algorithms that is theend-produ
t of this derivation pro
ess, opportunities for the introdu
tion of error areredu
ed. As a result, the proof of the 
orre
tness of the algorithm allows us to assertthe 
orre
tness of the 
ode.While the resulting infrastru
ture, FLAME, allowed us to qui
kly and reliably implement
omponents of a high-performan
e linear algebra library, it 
an equally well bene�t libraryusers who need to 
ustomize a given routine or to extend the fun
tionality of their ownlibrary.2.2 OverviewIn Se
tion 2.3.1 we review some basi
 insights from formal derivation theory. Next, in Se
-tion 2.4 we apply these insights to an illustrative example, LU fa
torization without pivoting,in order to develop a family of algorithms for a single, given operation. This is followedby Se
tion 2.5, in whi
h we summarize our systemati
 pro
ess for deriving linear algebraalgorithms. Then, in Se
tion 2.6 we show how library extensions added to the C program-ming language, together with 
areful formatting, allows one to write 
ode that re
e
ts thealgorithm. The fa
t that the te
hniques 
an be applied to a more diÆ
ult operation like LUfa
torization with partial pivoting is then demonstrated in Se
tion 2.7. Performan
e is of
on
ern in this area and in Se
tion 2.8 we demonstrate that high performan
e is not 
om-promised by raising the level of abstra
tion at whi
h one 
odes. Finally, future dire
tionsand 
on
lusions are given 
ursory treatment in Se
tion 2.10 and a more in-depth look inSe
tion 6.1.2.3 Ba
kgroundSome would immediately draw the 
on
lusion that a 
hange to a more modern programminglanguage like C++ is at least highly desirable, if not a ne
essary pre
ursor to writing elegant13
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ode. The fa
t is that most appli
ations that 
all linear algebra pa
kages are still written inFortran and/or C. Interfa
ing su
h an appli
ation with a library written in C++ presents
ertain 
ompli
ations. However, during the mid-1990s, the Message-Passing Interfa
e (MPI)introdu
ed to the s
ienti�
 
omputing 
ommunity a programming model, obje
t-based pro-gramming, that possesses many of the advantages typi
ally asso
iated with the intelligentuse of an obje
t-oriented language [69℄. Using obje
ts (e.g. 
ommuni
ators in MPI) toen
apsulate data stru
tures and hide 
omplexity, a mu
h 
leaner approa
h 
an be a
hieved.Our own work on PLAPACK borrowed from this approa
h in order to hide detailsof data distribution and data mapping in the realm of parallel linear algebra libraries. Theprimary 
on
ept, also germane to the work presented here, is that PLAPACK raises thelevel of abstra
tion at whi
h one programs so that indexing is essentially removed from the
ode, allowing the routine to re
e
t the algorithm as it is naturally presented in a 
lassroomsetting. Sin
e our initial work on PLAPACK, we have experimented with similar interfa
esin su
h 
ontexts as (parallel) out-of-
ore linear algebra pa
kages [45, 67℄ and a low-levelimplementation of the sequential Basi
 Linear Algebra Subprograms (BLAS) [42, 44℄.One strong motivation for systemati
ally deriving algorithms and redu
ing the 
om-plexity of translating these algorithms to 
ode 
omes from the fa
t that, for a given opera-tion, a di�erent algorithm may provide higher performan
e depending on the ar
hite
tureand/or the problem dimensions. Some of our previous resear
h [42℄ demonstrated thatthe eÆ
ient, transportable implementation of matrix-matrix multipli
ation on a sequentialar
hite
ture with a hierar
hi
al memory requires a hierar
hy of matrix algorithms whoseorganization mirrors that of the memory system under 
onsideration. Perhaps surprisingly,this is ne
essary even when the problem size is �xed. In the same paper, we des
ribe amethodology for 
omposing these routines. In this way, minimal 
oding e�ort is requiredto attain superior performan
e a
ross a wide spe
trum of algorithms, ar
hite
tures, andproblem sizes.Analogously, previous work demonstrated that an eÆ
ient implementation of par-allel matrix multipli
ation requires both multiple algorithms and a method for sele
ting anappropriate algorithm for the presented 
ase if one is to handle operands of various sizesand shapes [40℄. We have 
ome to a similar 
on
lusion in the 
ontext of out-of-
ore fa
tor-ization algorithms and their implementation using the Parallel Out-of-Core Linear AlgebraPACKage (POOCLAPACK) [45, 66℄. To summarize our experien
es: as high-performan
ear
hite
tures in
orporate 
a
he, lo
al, shared, and distributed memories all within one sys-tem, multiple algorithms for a single operation be
ome ne
essary for optimal performan
e.Traditional approa
hes make the implementation of libraries that span all possibilities nighimpossible.FLAME is the next step in the evolution of these systems. We 
onsider FLAME tobe an environment in the sense that it en
ourages the developer to systemati
ally 
onstru
ta family of algorithms for a given matrix operation. Ideally, the steps that lead to the algo-rithms are 
arefully do
umented, providing the proof that the algorithms are 
orre
t. Onlyafter its 
orre
tness 
an be asserted should the algorithm be translated to 
ode. Sin
e the
ode mirrors the algorithm, its 
orre
tness 
an be asserted as well, and minimal debugging14
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and testing is ne
essary. On
e the 
ode delivers the 
orre
t results, fun
tionality 
an beextended and/or performan
e optimizations 
an be in
orporated. We illustrate FLAMEin the simplest setting, for sequential algorithms. Minor modi�
ations to PLAPACK andPOOCLAPACK allow the porting to distributed-memory ar
hite
tures and/or out-of-
ore
omputations with essentially no 
hange to the 
ode. The extent of this similarity 
an beseen by 
omparing Figure 2.3(a) and Figure 3.72.3.1 The Corre
tness of LoopsIn a standard text by Gries and S
hneider used to tea
h dis
rete mathemati
s to under-graduates in 
omputer s
ien
e we �nd the following material ([36℄, pages 236{237):We prefer to write a while loop using the syntaxdo B ! S odwhere Boolean expression B is 
alled the guard and statement S is 
alled therepetend.[The l℄oop is exe
uted as follows: If B is false, then exe
ution of the loop termi-nates; otherwise S is exe
uted and the pro
ess is repeated.Ea
h exe
ution of repetend S is 
alled an iteration. Thus, if B is initially false,then 0 iterations o

ur.The text goes on to state:We now state and prove the fundamental invarian
e theorem for loops. This the-orem refers to an assertion P that holds before and after ea
h iteration (providedit holds before the �rst). Su
h a predi
ate is 
alled a loop-invariant.(12.43) Fundamental invarian
e theorem. Suppose� fP ^BgSfPg holds { i.e. exe
ution of S begun in a state in whi
hP and B are true terminates with P true { and� fPg do B ! S od true { i.e. exe
ution of the loop begun in astate in whi
h P is true terminates.Then fPg do B ! S od fP ^:Bg holds. [In other words, if the loopis entered in a state where P is true, it will 
omplete in a state whereP is true and guard B is false.℄The text pro
eeds to prove this theorem using the axiom of mathemati
al indu
tion.Let us translate the above programming 
onstru
t into our setting, whi
h we use toa

ommodate linear algebra algorithms. Consider the loopwhile B doSenddo15
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where B is some 
ondition and S is the body of the loop, the above theorem says that� The loop is entered in a state where some 
ondition P holds, and� for ea
h iteration, P holds at the top of the loop, and� the body of the loop S has the property that if it is exe
uted starting in a state whereP holds it 
ompletes in a state where P holds.Then if the loop 
ompletes, it will do so in a state where 
onditions P and :B both hold.Naturally, P and B are 
hosen su
h that P ^ :B implies that the desired linear algebraoperation has been 
omputed.A method that formally derives a loop (i.e., iterative implementation) approa
hesthe problem of determining the body of the loop as follows: First, one must determine
onditions B and P . Next, the body S should be developed so that it maintains 
onditionP while making progress towards 
ompleting the iterative pro
ess (eventually B shouldbe
ome false). The operations that 
omprise S follow naturally from simple manipulationof equalities and equivalen
es using matrix algebra. Thanks to the fundamental invarian
etheorem, this approa
h implies 
orre
tness of the loop.What we will argue in this paper is that for a large 
lass of dense linear algebraalgorithms there is a systemati
 way of determining di�erent 
onditions P that allow usdevelop loops to 
ompute a given linear algebra operation. The di�erent 
onditions yielddi�erent algorithmi
 variants for 
omputing the operation. We demonstrate this through theexample of LU fa
torization without pivoting. On
e we have demonstrated the te
hniques inthis simpler setting, we will also argue, although somewhat more informally, the 
orre
tnessof a hybrid iterative/re
ursive LU fa
torization with partial pivoting in Se
tion 2.7.2.4 A Case Study: LU Fa
torizationWe illustrate our approa
h by 
onsidering LU fa
torization without pivoting. Given a non-singular, n � n matrix ,A, we wish to 
ompute an n � n lower triangular matrix L withunit main diagonal and an n� n upper triangular matrix U so that A = LU . The originalmatrix A is overwritten by L and U in the pro
ess. We will denote this operation byA Â = LU(A)to indi
ate that A is overwritten by the LU fa
tors of A. Be
ause FLAME produ
es manyvariants of LU fa
torization, it is worthwhile to emphasize the fa
t that, if exa
t arithmeti
is performed, all variants will result in identi
al results. To see this assume that L1U1 =L2U2 are two di�erent fa
torizations. Multiplying both sides by L�12 on the left and U�11on the right yields L = L�12 L1 = U2U�11 = U , where L is unit lower-triangular and Uupper-triangular. Now, L = U implies L = U = I . It follows that L1 = L2 and U1 = U2,so our assumption has been 
ontradi
ted and the proof of uniqueness is 
omplete.16
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2.4.1 A 
lassi
al derivationThe usual derivation of an algorithm for the LU fa
torization pro
eeds as follows:PartitionA =  �11 aT12a21 A22 ! ; L =  1 0l21 L22 ! ; and U =  �11 uT120 U22 !Now A = LU translates to �11 aT12a21 A22 ! =  1 0l21 L22 ! �11 uT120 U22 ! =  �11 uT12l21�11 l21uT12 + L22U22 !so the following equalities hold:�11 = �11 aT12 = uT12a21 = �11l21 A22 = l21uT12 + L22U22Thus, we arrive at the following algorithm� Overwrite �11 and aT12 with �11 and uT12, respe
tively (no-op).� Update a21  l21 = a21=�11.� Update A22  A22 � l21uT12.� Fa
tor A22 ! L22U22 (re
ursively or iteratively).The algorithm is usually implemented as a loop, as illustrated in Fig. 2.1. When presentedin a 
lassroom setting, this algorithm is typi
ally a

ompanied by the following progressionof pi
tures: � 
urrent A - �11a21�11 aT12� A22 � a21�11 aT12-6Here the double lines indi
ate how far the 
omputation has progressed through the matrix.At the 
urrent stage the a
tive part of the matrix resides in the lower-right quadrant ofthe left pi
ture. Next, the di�erent parts to be updated are identi�ed and the updatesgiven (middle pi
ture). Finally, the boundary that indi
ates how far the 
omputation hasprogressed is moved forward (right pi
ture). It is this sequen
e of three pi
tures that we willtry to 
apture in the derivation, the spe
i�
ation of the algorithm, and the implementationof the algorithm. 17
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partition A! � ATL ATRABL ABR � where ATL is 0� 0do until ABR is 0� 0repartition � ATL ATRABL ABR �! 0� A00 a01 A02aT10 �11 aT12A20 a21 A22 1A where �11 is a s
alar�11  �11 = �11 (no-op)aT12  uT12 = aT12 (no-op)a21  l21 = a21=�11A22  A22 � l21uT12
ontinue with � ATL ATRABL ABR � 0� A00 a01 A02aT10 �11 aT12A20 a21 A22 1Aenddo Figure 2.1: Unblo
ked lazy algorithm for LU fa
torization.2.4.2 But what is the loop-invariant?Noti
e that in the above algorithm the original matrix is overwritten by intermediate resultsuntil �nally it 
ontains L and U . Let Â indi
ate the matrix in whi
h the LU fa
torization is
omputed, keeping in mind that Â overwrites A as part of the algorithm. Noti
e that afterk iterations of the algorithm in Fig. 2.1, Â 
ontains a partial result. We will denote thispartial result by Âk.In order to prove 
orre
tness, one question we must ask is what intermediate value,Âk, is in Â at any parti
ular stage of the algorithm. More pre
isely, we will ask the questionof what the 
ontents are at the beginning of the loop that implements the 
omputation ofthe fa
torization (e.g., the loop in Fig. 2.1). To answer this question, partition the matri
esas follows: A =  A(k)TL A(k)TRA(k)BL A(k)BR ! ; L =  L(k)TL 0L(k)BL L(k)BR ! ;U =  U (k)TL U (k)TR0 U (k)BR ! and Âk =  Â(k)TL Â(k)TRÂ(k)BL Â(k)BR !where A(k)TL, L(k)TL, U (k)TL , and Â(k)TL are all k � k matri
es and \T", \B", \L", and \R" standfor Top, Bottom, Left, and Right, respe
tively.Noti
e that A(k)TL A(k)TRA(k)BL A(k)BR ! =  L(k)TL 0L(k)BL L(k)BR ! U (k)TL U (k)TR0 U (k)BR !18
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=  L(k)TLU (k)TL L(k)TLU (k)TRL(k)BLU (k)TL L(k)BLU (k)TR + L(k)BRU (k)BR !so that the following equalities must hold:A(k)TL = L(k)TLU (k)TL (2.1)A(k)TR = L(k)TLU (k)TR (2.2)A(k)BL = L(k)BLU (k)TL (2.3)A(k)BR = L(k)BLU (k)TR + L(k)BRU (k)BR (2.4)We now show that di�erent 
onditions on the 
ontents of Â di
tate di�erent algorithmi
variants for 
omputing the LU fa
torization, and that these di�erent 
onditions 
an besystemati
ally generated from Equations 2.1{2.4.Noti
e that in Equations 2.1{2.4 the following partial results towards the 
omputa-tion of the fa
torization 
an be identi�ed:LnU (k)TL ; L(k)BL; U (k)TR; L(k)BLU (k)TR; and LnU (k)BRHere we use the notation LnU to denote lower and upper triangular matri
es that are storedin a square matrix by overwriting the lower and upper triangular parts of that matrix. Re
allthat L has ones on the diagonal that need not be stored. We restri
t our study to algorithmsthat employ Gaussian elimination and do not involve redundant 
omputations. Further, werequire that one or more of the partial results 
ontributing to the �nal 
omputation havebeen 
omputed. A few observations:� If L(k)TL has been 
omputed, the elements of U (k)TL has been 
omputed as well.� Sin
e L(k)BL = A(k)BLU (k)�1TL , data dependen
y 
onsiderations imply that U (k)TL must be
omputed before L(k)BL.� Similarly, sin
e U (k)TR = L(k)�1TL A(k)TR, data dependen
y analysis implies that L(k)TL needsto be 
omputed before U (k)TR.� Sin
e the 
omputation overwritesA, if L(k)BLU (k)TR has been 
omputed, Â(k)BR must 
ontainA(k)BR � L(k)BLU (k)TR.� If L(k)BR has been 
omputed, we assume that U (k)BR has been 
omputed as well (see �rstbullet).� If LnU (k)BR has been 
omputed, A(k)BR � L(k)BLU (k)TR must have been 
omputed �rst.Taking into a

ount the above observations, we give possible 
ontents of Âk inTable 2.1. The �rst and last 
onditions indi
ate that no 
omputation has been performed orthe �nal result has been 
omputed, neither of whi
h is a reasonable 
ondition to maintain19
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Table 2.1: Possible loop-invariants for LU fa
torization without pivoting.Condition Âk 
ontainsNo 
omputation has o

urred.  A(k)TL A(k)TRA(k)BL A(k)BR !Only (2.1) is satis�ed.  LnU (k)TL A(k)TRA(k)BL A(k)BR !Only (2.1) and (2.2) have been satis�ed.  LnU (k)TL U (k)TRA(k)BL A(k)BR !Only (2.1) and (2.3) have been satis�ed.  LnU (k)TL A(k)TRL(k)BL A(k)BR !Only (2.1), (2.2), and (2.3) have been satis�ed.  LnU (k)TL U (k)TRL(k)BL A(k)BR !(2.1), (2.2), and (2.3) have been satis�ed and asmu
h of (2.4) has been 
omputed without 
omput-ing any part of L(k)BR or U (k)BR.  LnU (k)TL U (k)TRL(k)BL A(k)BR � L(k)BLU (k)TR !
(2.1), (2.2), (2.3), and (2.4) have all been satis�ed.  LnU (k)TL U (k)TRL(k)BL LnU (k)BR !

20
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as part of the loop. This leaves �ve loop-invariants whi
h, we will see, lead to �ve di�erentvariants for LU fa
torization.Note that in this paper we will not 
on
ern ourselves with the question of whetherthe above 
onditions exhaust all possibilities. However, they do give rise to many 
ommonlydis
ussed algorithms. In fa
t, in [23℄ six variants, 
alled the ijk orders, of A = LU are listed.The jki form is 
ommonly known as a left-looking algorithm while the ikj method is left-looking on AT . Together, they 
orrespond to the row- and 
olumn-lazy variants dis
ussedin this paper. The kij and kji forms both 
orrespond to what has been traditionally 
alledthe right-looking algorithm; here, both would be deemed forms of the eager algorithm, onea 
olumn- and one a row-oriented version. The ijk and jik forms are more 
ommonly knownas the Doolittle (Crout) algorithm and 
orrespond to row- and 
olumn-oriented versionsof the row-
olumn-lazy variant 
onsidered in this do
ument. The lazy algorithm dis
ussedin this paper has no 
orresponding variant in the ijk family of algorithms. Further, the
onditions delineated above yield all algorithms depi
ted on the 
over of, and dis
ussedin, G.W. Stewart's re
ent book on matrix fa
torization [71℄. This 
omes as no surpriseas we, like Stewart, have adopted some 
ommon impli
it assumptions about both matrixpartitioning and the nature of algorithmi
 advan
ement. Our a priori assumptions wereonly slightly less 
onstri
ting than those imposed by the authors who employed the ijks
heme mentioned above. In this paper we have restri
ted ourselves to a 
onsideration ofonly those algorithms whose progress is \simple." That is, ea
h iteration of the algorithmis geographi
ally monotoni
 and formulai
ally identi
al. The 
ombination of these twoproperties leads to algorithms whose (indu
tive) proofs of 
orre
tness are straightforwardand whose implementations, given our framework, are virtually foolproof.We will label any algorithm \Lazy" if it does the least amount of 
omputationpossible in the indu
tive step and \Eager" if it performs as mu
h work as possible at thatpoint. We explain our 
lassi�
ation further in [43℄. It needs to be evaluated against a large
lass of algorithms before we make any de�nitive 
laims regarding is usefulness.2.4.3 Lazy algorithmThis algorithm is often referred to as a bordered algorithm in the literature. Stewart, [71℄rather 
olorfully, refers to it as Sherman's mar
h.Unblo
ked AlgorithmLet us assume that only (2.1) has been satis�ed. To determine the body of the loop (state-ment S), the question be
omes how to update the 
ontents of Â: Â(k)BR Â(k)TRÂ(k)BL A(k)BR ! =  LnU (k)BR A(k)TRA(k)BL A(k)BR !�!  Â(k+1)BR Â(k+1)TRÂ(k+1)BL Â(k+1)BR ! =  LnU (k+1)BR A(k+1)TRA(k+1)BL A(k+1)BR !
21
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To answer this, repartition A(k)TL Â(k)TRA(k)BL Â(k)BR ! = 0BB� A(k)00 � a(k)01 A(k)02 � a(k) T10A(k)20 !  �(k)11 a(k) T12a(k)21 A(k)22 ! 1CCAwhere A(k)00 is k � k (and thus equal to A(k)TL), and �(k)11 is a s
alar. Repartition Âk, L, andU similarly. This repartitioning identi�es submatri
es that must be updated in order to beable to move the boundary (indi
ated by the double lines) forward. Noti
e that using thisnew partitioning, Âk 
urrently 
ontains LnU (k)TL A(k)TRA(k)BL A(k)BR ! = 0BB� LnU (k)00 � a(k)01 A(k)02 � a(k) T10A(k)20 !  �(k)11 a(k) T12a(k)21 A(k)22 ! 1CCAAfter moving the double lines, the partitioning of A be
omes A(k+1)TL A(k+1)TRA(k+1)BL A(k+1)BR ! = 0BB�  A(k)00 a(k)01a(k) T10 �11 !  A(k)02a(k) T12 !� A(k)20 a(k)21 � A(k)22 1CCAand the partitionings of Âk+1, L, and U 
hange similarly. Thus, Âk+1 must 
ontain LnU (k+1)TL A(k+1)TRA(k+1)BL A(k+1)BR ! = 0BB�  LnU (k)00 u(k)01l(k)T10 �(k)11 !  A(k)02a(k) T12 !� A(k)20 a(k)21 � A(k)22 1CCAIn summary, in order to maintain the loop-invariant, the 
ontents of Â must be updatedlike0BB� LnU (k)00 � a(k)01 A(k)02 � a(k) T10A(k)20 !  �(k)11 a(k)T12a(k)21 A(k)22 ! 1CCA ! 0BB�  LnU (k)00 u(k)01l(k)T10 �(k)11 !  A(k)02a(k) T12 !� A(k)20 a(k)21 � A(k)22 1CCAThus, it suÆ
es to 
ompute u(k)01 , l(k)10 , and �(k)11 , overwriting the 
orresponding parts a(k)01 ,a(k)10 , and �(k)11 .To determine how to 
ompute these quantities, 
onsider0B� A(k)00 a(k)01 A(k)02a(k) T10 �(k)11 a(k) T12A(k)20 a(k)21 A(k)22 1CA = 0B� L(k)00 0 0l(k) T10 1 0L(k)20 l(k)21 L(k)22 1CA0B� U (k)00 u(k)01 U (k)020 �(k)11 u(k)T120 0 U (k)22 1CA= 0B� L(k)00 U (k)00 L(k)00 u(k)01 L(k)00 U (k)02l(k)T10 U (k)00 l(k)T10 u(k)01 + �(k)11 l(k)T10 U (k)02 + u(k)T12L(k)20 U (k)00 L(k)20 U (k)01 + l(k)21 �(k)11 L(k)20 U (k)02 + l(k)21 u(k)T12 + L(k)22 U (k)22 1CA22
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partitionA! � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0repartition� ATL ATRABL ABR �! A00 a01 A02aT10 �11 aT12A20 a21 A22 !where �11 is a s
alara01  u01 = L�100 a01aT10  lT10 = aT10U�100�11  �11 = �11 � lT10u01
ontinue with� ATL ATRABL ABR �  A00 a01 A02aT10 �11 aT12A20 a21 A22 !enddo

partitionA! � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0determine blo
k size brepartition� ATL ATRABL ABR �! A00 A01 A02A10 A11 A12A20 A21 A22 !where A11 is b� bA01  U01 = L�100 A01A10  L10 = A10U�100A11  LnU11 = LU(A11 � L10U01)
ontinue with� ATL ATRABL ABR �  A00 A01 A02A10 A11 A12A20 A21 A22 !enddoFigure 2.2: Unblo
ked and blo
ked versions of the lazy variant for 
omputing the LU fa
-torization of a square matrix A (without pivoting).From this equation we �nd that the following equalities must hold:A(k)00 =L(k)00 U (k)00 a(k)01 =L(k)00 u(k)01 A(k)02 =L(k)00 U (k)02a(k)T10 = l(k)T10 U (k)00 �(k)11 = l(k)T10 u(k)01 + �(k)11 a(k)T12 = l(k)T10 U (k)02 + u(k)T12A(k)20 =L(k)20 U (k)00 a(k)21 =L(k)20 U (k)01 + l(k)21 �(k)11 A(k)22 =L(k)20 U (k)02 + l(k)21 u(k)T12 + L(k)22 U (k)22 (2.5)To 
ompute u(k)01 one must solve the triangular system L(k)00 u(k)01 = a(k)01 . The result 
anoverwrite a(k)01 . To 
ompute l(k)10 we solve the triangular system l(k)T10 U (k)00 = a(k) T10 . Theresult 
an overwrite a(k)T10 . To determine �11 we merely 
ompute �(k)11 = �(k)11 � l(k)T10 u(k)01 .The result 
an overwrite �(k)11 . This motivates the algorithm in Fig. 2.2 (left) for overwritinga given non-singular, n� n matrix A with its LU fa
torization.To demonstrate that in deriving the algorithm we have 
onstru
tively proven its
orre
tness, 
onsider the following:Theorem 1 The algorithm in Fig. 2.2 (left) overwrites a given non-singular, n�n matrix,A, with its LU fa
torization.Proof: To prove this theorem, we merely invoke the Fundamental invarian
e theorem.Here the guard B is ABR 6= 0� 0, predi
ate P isÂ 
ontains =  LnUTL ATRABL ABR ! where LnUTL is k � k23
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and the statement S is the body of the loop in Fig. 2.2 (left).First, noti
e that the statementPartition A =  ATL ATRABL ABR !where ATL is 0� 0has the property that after its exe
ution P holds sin
e LnUTL, ATR, and ABL are all empty(they have row and/or 
olumn dimensions equal to zero) and ABR = A. Thus, just beforethe loop is �rst entered Â =  LnUTL ATRABL ABR ! = ABR = Aand we 
on
lude that P holds when k = 0.Re
all that the body of the loop was developed so that fP ^ BgSfPg holds, i.e. ifthe 
ondition holds at the top of the loop, then it holds at the bottom of the loop (justbefore the enddo). Also, sin
e at ea
h step the size of ABR de
reases by one, guard B willeventually be
ome false, fPg do B ! S od true holds (i.e. exe
ution of the loop begunin a state in whi
h P is true terminates). We have shown that all of the 
onditions of theFundamental invarian
e theorem hold. We therefore 
on
lude that if the loop is entered ina state where P holds, it will 
omplete in a state where P is true and guard B is false.This means that Â 
ontains  LnUTL ATRABL ABR ! where ABR is 0�0 and 
ompletionof the loop transpires when k = n. Thus the �nal 
ontents of the matrix are Â = LnUTLwhere LTL and UTL are unit-lower and upper-triangular matri
es of order n. We 
on
ludethat upon exiting the loop, the matrix has been overwritten by its LU fa
torization. 2Blo
ked AlgorithmFor performan
e reasons it be
omes bene�
ial to derive a blo
ked version of the above-presented algorithm. The derivation 
losely follows that of the unblo
ked algorithm: Againassume that only (2.1) has been satis�ed. The question is now how to 
ompute Âk+b fromÂk for some small blo
k size b (i.e. 1 < b� n). To answer this, repartitionA =  A(k)TL A(k)TRA(k)BL A(k)BR ! = 0B� A(k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CA (2.6)where A(k)00 is k � k (and thus equal to A(k)TL), and A(k)11 is b� b. Repartition L, U , and Âk
onformally. Noti
e it is our assumption that Âk holdsÂk =  LnU (k)TL A(k)TRA(k)BL A(k)BR ! = 0B� LnU (k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CA24
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The desired 
ontents of Âk+b are given byÂk+b =  Â(k+b)TL Â(k+b)TRÂ(k+b)BL Â(k+b)BR ! = 0B� LnU (k)00 U (k)01 A(k)02L(k)10 LnU(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CAThus, it suÆ
es to 
ompute U (k)01 , L(k)10 , L(k)11 , and U (k)11 .To derive how to 
ompute these quantities, 
onsiderA = 0B� A(k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CA = 0B� L(k)00 0 0L(k)10 L(k)11 0L(k)20 L(k)21 L(k)22 1CA0B� U (k)00 U (k)01 U (k)020 U (k)11 U (k)120 0 U (k)22 1CA= 0B� L(k)00 U (k)00 L(k)00 U (k)01 L(k)00 U (k)02L(k)10 U (k)00 L(k)10 U (k)01 + L(k)11 U (k)11 L(k)10 U (k)02 + L(k)11 U (k)12L(k)20 U (k)00 L(k)20 U (k)01 + L(k)21 U (k)11 L(k)20 U (k)02 + L(k)21 U (k)12 + L(k)22 U (k)22 1CAThis yields the equalitiesA(k)00 =L(k)00 U (k)00 A(k)01 =L(k)00 U (k)01 A(k)02 =L(k)00 U (k)02A(k)10 =L(k)10 U (k)00 A(k)11 =L(k)10 U (k)01 + L(k)11 U (k)11 A(k)12 =L(k)10 U (k)02 + L(k)11 U (k)12A(k)20 =L(k)20 U (k)00 A(k)21 =L(k)20 U (k)01 + L(k)21 U (k)11 A(k)22 =L(k)20 U (k)02 + L(k)21 U (k)12 + L(k)22 U (k)22 (2.7)Thus,1. To 
ompute U (k)01 we solve the triangular system L(k)00 U (k)01 = A(k)01 . The result 
anoverwrite A(k)01 .2. To 
ompute L(k)10 we solve the triangular system L(k)10 U (k)00 = A(k)10 . The result 
anoverwrite A(k)10 .3. To 
ompute L(k)11 and U (k)11 we simply update A(k)11  A(k)11 �L(k)10 U (k)01 = A(k)11 �A(k)10 A(k)01after whi
h the result 
an be fa
tored into L(k)11 and U (k)11 using the unblo
ked algorithm.The result 
an overwrite A(k)11 .The pre
eding dis
ussion motivates the algorithm in Fig. 2.2 (right) and Fig. 2.3(b)for overwriting the given non-singular, n� n matrix A with its LU fa
torization. A 
arefulanalysis shows that the blo
ked algorithm does not in
ur even a single extra 
omputationrelative to the unblo
ked algorithm.The proof of the following theorem is similar to that of Theorem 1.Theorem 2 The algorithm in Fig. 2.2 (right) overwrites a given non-singular, n�n matrix,A, with its LU fa
torization. 25
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2.4.4 Row-lazy algorithmAs a point of referen
e, Stewart [71℄ 
alls this algorithm Pi
kett's 
harge south.Let us assume that only (2.1) and (2.2) have been satis�ed. We will now dis
ussonly a blo
ked algorithm that 
omputes Âk+b from Âk while maintaining these 
onditions.Repartition A, L, U , and Âk 
onformally as in (2.6). Our assumption is that Âkholds Âk =  LnU (k)TL U (k)TRA(k)BL A(k)BR ! = 0B� LnU (k)00 U (k)01 U (k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CAThe desired 
ontents of Âk+b are given byÂk+b =  Â(k+b)TL Â(k+b)TRÂ(k+b)BL Â(k+b)BR ! = 0B� LnU (k)00 U (k)01 U (k)02L(k)10 LnU (k)11 U (k)12A(k)20 A(k)21 A(k)22 1CAThus, it suÆ
es to 
ompute L(k)10 , LnU(k)11 , and U (k)12 . Re
alling the equalities in (2.7) wenoti
e that1. To 
ompute L(k)10 we 
an solve the triangular system L(k)10 U (k)00 = A(k)10 . The result 
anoverwrite A(k)10 .2. To 
ompute L(k)11 and U (k)11 we 
an update A(k)11  A(k)11 � L(k)10 U (k)01 = A(k)11 � A(k)10 A(k)01after whi
h the result 
an be fa
tored into L(k)11 and U (k)11 . The result 
an overwriteA(k)11 .3. To 
ompute U (k)12 we 
an update A(k)12  A(k)12 � L(k)10 U (k)02 after whi
h we solve thetriangular system L(k)11 U (k)12 = A(k)12 , overwriting the original A(k)12 .These steps and the pre
eding dis
ussion lead one dire
tly to the algorithm inFig. 2.3(
).The proof of the following theorem is similar to that of Theorem 1.Theorem 3 The algorithm in Fig. 2.3(
) overwrites a given non-singular, n � n matrix,A, with its LU fa
torization.2.4.5 Column-lazy algorithmThis algorithm is referred to as a left-looking algorithm in [27℄ while Stewart [71℄ 
alls itPi
kett's 
harge east.Let us assume that only (2.1) and (2.3) have been satis�ed. Now it suÆ
es to
ompute U (k)01 , LnU (k)11 , and L(k)21 . Using the same te
hniques as before one derives thealgorithm in Fig. 2.3 (d). Again, this algorithm overwrites the given non-singular, n � nmatrix, A, with its LU fa
torization.The proof of the following theorem is similar to that of Theorem 1.26
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Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Repartition� ATL ATRABL ABR �=0� A00 A01 A02A10 A11 A12A20 A21 A22 1Awhere A11 is b� b(a) Eager:A11  LnU 11 = LU(A11)A12  U12 = L�111 A12A21  L21 = A21U�111A22  A22 � L21U12(b) Lazy:View A00 as LnU 00A01  L01 = L�100 A01A10  L10 = A10U�100A11  LnU 11 = LU(A11 �L10U01) (
) Row-lazy:View A00 as LnU 00A10  L10 = A10U�100A11  LnU 11 = LU(A11 �L10U01)A12  U12 = L�111 (A12 � L10U02)(d) Column-lazy:View A00 as LnU 00A01  U01 = L�100 A01A11  LnU 11 = LU(A11 �L10U01)A21  L21 = (A21 � L20U01)U�111 (e) Row-
olumn-lazy:A11  LnU 11 = LU(A11 �L10U01)A12  U12 = L�111 (A12 � L10U02)A21  L21 = (A21 � L20U01)U�111Continue with� ATL ATRABL ABR �=0� A00 A01 A02A10 A11 A12A20 A21 A22 1AenddoFigure 2.3: LU fa
torization without pivoting for �ve 
ommonly en
ountered variants.
27
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Theorem 4 The algorithm in Fig. 2.3(d) overwrites a given non-singular, n � n matrix,A, with its LU fa
torization.2.4.6 Row-
olumn-lazy algorithmThis algorithm is often referred to as Crout's methods in the literature [18℄.We assume that only (2.1), (2.2), and (2.3) have been satis�ed. This time, it suÆ
esto 
ompute LnU(k)11 , U (k)12 , and L(k)21 , yielding the algorithm in Fig. 2.3 (e). Again, thisalgorithm overwrites a given non-singular, n� n matrix, A, with its LU fa
torization.The proof of the following theorem is similar to that of Theorem 1.Theorem 5 The algorithm in Fig. 2.3(e) overwrites a given non-singular, n � n matrix,A, with its LU fa
torization.2.4.7 Eager algorithmThis algorithm is often referred to as 
lassi
al Gaussian elimination.We pro
eed under the assumption that (2.1), (2.2), and (2.3) have been satis�ed,and as mu
h of (2.4) as possible has been 
omputed, without 
ompleting the 
omputationof any part of LBR and UBR. Repartition A, L, U , and Âk 
onformally as in (2.6). Noti
e,our assumption is that Âk holds LnU (k)TL U (k)TRL(k)BL A(k)BR � L(k)BLU (k)TR ! = 0B� LnU (k)00 U (k)01 U (k)02L(k)10 A(k)11 � L(k)10 U (k)01 A12 � L(k)10 U (k)02L(k)20 A(k)21 � L(k)20 U (k)01 A(k)22 � L(k)20 U (k)02 1CAThe desired 
ontents of Âk+b are given by LnU(k+b)TL U (k+b)TRL(k+b)BL A(k+b)BR � L(k+b)BL U (k+b)TR != 0B� LnU (k)00 U (k)01 U (k)02L(k)10 LnU (k)11 U (k)12L(k)20 L(k)21 A(k)22 � L(k)20 U (k)02 � L(k)21 U (k)12 1CAThus, it suÆ
es to 
ompute LnU (k)11 , L(k)21 , U (k)12 , and to update Â(k)22 . Re
alling the equalitiesin (2.7) we �nd1. To 
ompute L(k)11 and U (k)11 we fa
tor Â(k)11 whi
h already 
ontains A(k)11 �L(k)10 U (k)01 . Theresult 
an overwrite Â(k)11 .2. To 
ompute U (k)12 we update Â(k)12 whi
h already 
ontains A(k)12 � L(k)10 U (k)02 by solvingL(k)11 U (k)12 = Â(k)12 , overwriting the original Â(k)12 .3. To 
ompute L(k)21 we update A(k)21 whi
h already 
ontains A(k)21 � L(k)20 U (k)01 by solvingL(k)21 U (k)11 = Â(k)21 , overwriting the original Â(k)21 .28
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4. We then update Â(k)22 whi
h already 
ontains A(k)22 � L(k)20 U (k)02 with Â(k)22 � L(k)21 U (k)12 ,overwriting the original Â(k)22 .The resulting algorithm is given in Fig. 2.3(a). Noti
e that this algorithm is the blo
kedequivalent to the algorithm derived in Se
tion 2.4.1.The proof of the following theorem is similar to that of Theorem 1.Theorem 6 The algorithm in Fig. 2.3(a) overwrites a given non-singular, n � n matrix,A, with its LU fa
torization.2.5 A Re
ipe for Deriving AlgorithmsThe derivations of the di�erent algorithmi
 variants of LU fa
torization, detailed above,were extremely systemati
. The following re
ipe was used:1. State the operation to be performed.2. Partition the operands. Noti
e that some justi�
ation is needed for the parti
ular wayin whi
h they are partitioned. For LU fa
torization, this has to do with the fa
t thatblo
ks of zeroes must be isolated in L and U , as they are triangular matri
es.3. Multiply out all matrix produ
ts 
orresponding to this partitioning.4. Equate the submatrix relations that result from the partitioning of Step 3. These de�ne
omputations that the algorithm must perform in order to maintain 
orre
tness.5. Pi
k a loop-invariant from the set of possible loop-invariants that satisfy the equa-tions given in Step 4. Noti
e that this loop-invariant plays the role of an indu
tionhypothesis.6. From that loop-invariant, derive the steps required to maintain the loop-invariant whilemoving the algorithm forward in the desired dire
tion. This requires the followingsubsteps:(a) Repartition so as to expose the boundaries after they are moved.(b) Indi
ate the 
urrent 
ontents for the repartitioned matri
es.(
) Indi
ate the desired 
ontents for the repartitioned matri
es su
h that the loop-invariant is maintained.(d) Determine the 
omputations required to transform (update) the 
ontents indi-
ated in 6b to those indi
ated in 6
, (Naturally, it must be veri�ed that these
omputations are possible.)7. Update the partitioning of the matri
es.8. Continue until the partitioning yields the null matrix for the \BR" submatrix.29



www.manaraa.com

9. Classify the algorithm. We have developed a systemati
 way of 
lassifying the derivedalgorithms based upon the nature of the indu
tive step of the algorithm. While weuse this 
lassi�
ation in the labeling of the algorithms in the previous se
tion, we willnot go into further detail here.A more 
omplete re
ipe for a broader 
lass of linear algebra operations 
an be found in [43℄.We again point out that the re
ipe impli
itly provides a proof of 
orre
tness forthe algorithm sin
e Steps 5{6d emulate the proof by mathemati
al indu
tion. Further,the te
hnique employed for deriving these variants of LU fa
torization generalizes to otherfa
torization algorithms, e.g. Cholesky and QR.2.6 En
oding the Algorithm in CIn this se
tion we brie
y dis
uss how dense linear algebra algorithms, as presented inFigs. 2.1{2.3, 
an be translated into 
ode. We �rst show a more traditional approa
has it appears in popular pa
kages like LAPACK. Next, we present an alternative frameworkthat allows implementation at a higher level of abstra
tion that mirrors how we naturallypresent the algorithms. This se
ond approa
h has been su

essfully used in PLAPACK andour FLAME framework represents a re�nement of this methodology.2.6.1 Classi
 implementation with the BLASLet us 
onsider the blo
ked eager algorithm for the LU fa
torization presented in Fig. 2.3(a). This algorithm requires an LU fa
torization of a small matrix, A11  LnU11 =LU fa
t.(A11), triangular solves with multiple right-hand-sides to update A12  U12 =L�111 A12 and A21  L21 = A21U�111 , and a matrix-matrix multiply to update A22  A22 � L21U12. The triangular solves and matrix-matrix multiply are part of the Basi
Linear Algebra Subprograms (BLAS) (
alls to the routines DTRSM and DGEMM, respe
tively).To understand this 
ode, it helps to 
onsider the partitioning of the matrix for a typi
alloop index j, as illustrated in Fig. 2.4: A11 is B by B and starts at element A(J,J), A21is N-(J-1)-B by B and starts at element A(J+B,J) , A12 is B by N-(J-1)-B and starts atelement A(J,J+B), and A22 is N-(J-1)-B by N-(J-1)-B and starts at element A(J+B,J+B).The resultant 
ode is given in Fig. 2.5.Given this pi
ture, it is relatively easy to determine all of the parameters that mustbe passed to the appropriate BLAS routines.2.6.2 The algorithm is the 
odeWe would argue that it is relatively easy to generate the 
ode in Fig. 2.5 given the algorithmin Fig. 2.3(a) and the pi
ture in Fig. 2.4. However, the translation of the algorithm tothe 
ode is made tedious and error-prone by the fa
t that one has to think very 
arefullyabout indi
es and matrix dimensions. While this is not mu
h of a problem if one only hadto implement just one algorithm, real diÆ
ulties may arise when implementing a number30
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A00 A01 A02A10 A11 A12t tt tJ - -J+B - -??J ??J+B 	 J-1	 B	 N-(J-1)-B|{z}J-1 |{z}B |{z}N-J-B+1A20 A21 A22Figure 2.4: Partitioning of matrix A with all dimensions annotated when A00 = ATL is(j � 1)� (j � 1).SUBROUTINE LU_EAGER_LEVEL3( N, A, LDA, NB )INTEGER N, LDA, NB, J, BDOUBLE PRECISION A( LDA, * ), ONE, NEG_ONEPARAMETER ( ONE = 1.0D00, NEG_ONE = -1.0D00 )DO J=1, N, NBB = MIN( N-J+1, NB )C A11 <- L\U11 = LU fa
t( A11 )CALL LU_EAGER_LEVEL2( B, A( J,J ), LDA )IF ( J+B <= N ) THENC A12 <- U12 = inv( L11 ) * A12CALL DTRSM("LEFT", "LOWER TRIANGULAR", "NO TRANSPOSE", "UNIT DIAGONAL",$ ONE, B, N-J-B, A( J,J ), LDA, A( J, J+B ), LDA)C A21 <- L21 = A21 * inv( U11 )CALL DTRSM("RIGHT", "UPPER TRIANGULAR", "TRANSPOSE", "NONUNIT DIAGONAL",$ ONE, N-J-B, B, A( J,J ), LDA, A( J+B, J ), LDA)C A22 <- A22 - A21 * A12CALL DGEMM("NO TRANSPOSE", "NO TRANSPOSE", N-(J-1)-B, N-(J-1)-B, B,$ NEG_ONE, A( J+B, J ), LDA, A( J, J+B ), LDA, ONE, A( J+B, J+B), LDA)ENDIFENDDORETURNENDFigure 2.5: Fortran implementation of blo
ked eager LU fa
torization algorithm using theBLAS. (Find the bug without referring to Fig. 2.4 or the text!)
31
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Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Repartition� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !where A11 is b� binsert update hereContinue with� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !enddoFigure 2.6: Algorithm skeleton for LU fa
torization without pivoting.of possible algorithmi
 variants for a given operation or, in the 
ase of a library su
h asLAPACK, implementing even a single su
h variant of ea
h of a large number of operations.One be
omes even more a
utely aware of these issues when distributed-memory ar
hite
turesenter the pi
ture, as in S
aLAPACK.In an e�ort to make the 
ode look like the algorithms given in Fig. 2.3, while si-multaneously a

ounting for the 
onstraints imposed by C and Fortran, we have developedFLAME. The algorithmi
 and 
ode skeletons shared by the �ve variants for the LU fa
-torization, developed earlier in this paper, are given in Figs. 2.6 and 2.7, respe
tively. Tounderstand the 
ode, it suÆ
es to realize that A is being passed to the routine as a datastru
ture, A, that des
ribes all attributes of this matrix, su
h as dimensions and methodof storage. Inquiry routines like FLA Obj length are used to extra
t information, in this
ase the row dimension of the matrix. Finally, ATL, A00, et
. are simply referen
es into theoriginal array des
ribed by A.If one is familiar with the 
oding 
onventions used to name the BLAS kernels, it is
lear that the following 
ode segments, when entered in the appropriate pla
e (lines 22-34)in the 
ode in Fig. 2.7, implement the di�erent variants of the LU fa
torization:Lazy algorithm23 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,24 ONE, A00, A10);25 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,26 ONE, A00, A01);27 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);28 FLA_LU_nopivot_level2(A11); 32
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1 #in
lude "FLAME.h"23 void FLA_LU_nopivot_skeleton( FLA_Obj A, nb_alg )4 {5 FLA_Obj ATL, ATR, A00, A01, A02,6 ABL, ABR, A10, A11, A12,7 A20, A21, A22;89 FLA_Part_2x2( A, &ATL, /**/ &ATR,10 /* ************** */11 &ABL, /**/ &ABR,12 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL );1314 while ( b=min(min(FLA_Obj_length( ABR ), FLA_Obj_width( ABR )), nb_alg) != 0 )15 {16 FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, /**/ &A01, &A02,17 /* ************* */ /* ******************** */18 /**/ &A10, /**/ &A11, &A12,19 ABL, /**/ ABR &A20, /**/ &A21, &A22,20 /* with */ b, /* by */ b, /* A11 split from */ FLA_BR );21 /* ********************************************************************* */insert 
ode for update here31 /* ********************************************************************* */32 FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, A01, /**/ A02,33 /**/ A10, A11, /**/ A12,34 /* ************** */ /* ****************** */35 &ABL, /**/ &ABR, A20, A21, /**/ A22,36 /* with A11 added to submatrix */ FLA_TL );37 }38 }Figure 2.7: A 
ode skeleton for the C implementation of many of the blo
ked LU fa
torizationalgorithms using FLAME.
33
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Row-lazy algorithm23 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,24 ONE, A00, A10);25 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);26 FLA_LU_nopivot_level2(A11);27 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12);28 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,29 ONE, A11, A12);Column-lazy algorithm23 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,24 ONE, A00, A01);25 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);26 FLA_LU_nopivot_level2(A11);27 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, A01, ONE, A21);28 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,29 ONE, A11, A21);Row-
olumn-lazy algorithm23 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);24 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, A01, ONE, A21);25 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12);26 FLA_LU_nopivot_level2(A11);27 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,28 ONE, A11, A12);29 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,30 ONE, A11, A21);Eager algorithm23 FLA_LU_nopivot_level2( A11 );24 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,25 ONE, A11, A12);26 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,27 ONE, A11, A21);28 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A21, A12, ONE, A22);2.6.3 Positive features of the FLAME approa
hNaturally, one 
an argue that determining whi
h of the two methods for 
oding the algo-rithms might be deemed \superior" is simply a matter of taste. However, to support our
ase, we list the following questions and/or observations:� What if a bug were introdu
ed into the 
ode in Fig. 2.5? Indeed, in that 
ode we\a

identally" repla
ed N-(J-1)-B with N-J-B. This kind of bug is extremely hardto tra
k down sin
e the only 
lue is that the 
ode produ
es the wrong answer or
auses a segmentation fault. A similar bug is not as easily introdu
ed into the 
odeimplemented using FLAME sin
e it does not 
ontain indi
es. Furthermore, with this34
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approa
h it is easy to perform a run-time 
he
k in order to determine if the dimensionsof the di�erent matrix operands passed to a routine are 
onsistent.� When 
oding all variants of the LU fa
torization one inherently has to derive allalgorithms, leading to des
riptions like those given in Fig. 2.3. However, translatingthose to 
ode like that given in Fig. 2.5 would require several 
areful 
onsiderations ofthe pi
ture in Fig. 2.4. Moreover, due to the detailed and extensive indexing involvedin that approa
h, 
onsiderable testing would be required before one 
ould de
lare the
ode bug-free. By 
ontrast, given the algorithms, it has been argued that generatingall variants using FLAME is straightforward. As has already been mentioned, sin
ethe 
ode 
losely resembles the algorithm, one 
an be mu
h more 
on�dent about its
orre
tness before the 
ode is tested.� What if we wished to parallelize the given 
ode? Noti
e that parallelizing a smallsubset of the fun
tionality of LAPACK as part of the S
aLAPACK proje
t has taken
onsiderable e�ort. The FLAME 
ode 
an be transformed into PLAPACK 
ode es-sentially by repla
ing FLA by PLA . This highlights the one-to-one 
orresponden
ebetween FLAME and PLAPACK 
odes; this 
orresponden
e is found to be la
kingwhen one 
onsiders LAPACK and S
aLAPACK 
odes in the same light.� What if we needed a parallel out-of-
ore version of the 
ode? In prin
iple, theFLAME 
ode 
an be transformed into Parallel Out-of-Core Linear Algebra PACK-age (POOCLAPACK) 
ode by repla
ing FLA by POOCLA .2.6.4 But what about Fortran?Again using MPI as an inspiration, a Fortran interfa
e is available for FLAME. Examplesof Fortran 
ode are available on the FLAME web page, given at the end of this paper.2.6.5 Proving the implementation 
orre
tIn Se
tion 2.4.3 we proved 
orre
tness of the lazy algorithm and in subsequent subse
tions ofSe
tion 2.4 asserted that the 
orre
tness of the other algorithms 
an be established in mu
hthe same way. If the routines 
alled by the des
ribed FLAME 
ode 
orre
tly implementthe operations implied by their names, then it 
an be argued that the 
ode itself is 
orre
t.Indeed, debugging is not ne
essary.There are a number of reasons that we are 
omfortable in making su
h a boldassertion. The justi�
ations for the statement rely upon features of both our systemati
algorithmi
 design methodology, the library supporting the implementation of the algorithm,and to the relationship between the two.The manner in whi
h we systemati
ally generate algorithms relies, primarily, on twodesign pillars, whi
h together make up FLAME. The �rst is that we have limited the 
lass ofproblems under 
onsideration to those in linear algebra. The se
ond is that our algorithms35
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onsistently build upon the fundamental invarian
e theorem. This restri
tion leads to thedevelopment of algorithms whose 
orre
tness 
an be established.Naturally, FLAME is designed to express these systemati
ally generated algorithmsin a manner that is both 
on
ise and unambiguous. Therefore, the FLAME 
ode 
an bemade to mirror the algorithms thus produ
ed. This leads one to 
on
lude that the two most
ommon sour
es of error are eliminated. The translation from algorithm to 
ode is easilyautomatable be
ause of the one-to-one relation between the two, so that a very 
ommonmistake, namely the 
ode not re
e
ting the algorithm (when one 
onsiders a textual versionof the algorithm as it might be presented in a textbook), 
an be obviated. A se
ond 
ommonmistake made with su
h 
odes, indexing errors, is eliminated from the top-level expressionof FLAME 
ode be
ause FLAME does no expli
it indexing. To be 
ertain, there are afew support routines within FLAME that perform indexing. However, these routines areso small that they are amenable to both standard proof-of-
orre
tness te
hniques and totruly \exhaustive" testing. In a sense, these routines are analogous to FLAME's \assemblylanguage" and their reliability is 
omparable to that of a robust 
ompiler.Be
ause our method of derivation leads to a 
lass of algorithms whose proof of 
or-re
tness is straightforward and sin
e the language we use to express the produ
ed algorithmsshould not lead to any (unintentional) mistranslation from algorithm to 
ode, we believethat the 
oupled system leads to programs whose 
orre
tness follows from a mathemati
alderivation of the algorithm.2.7 LU Fa
torization with Partial PivotingWe now demonstrate that the te
hniques that we introdu
ed using the example of LUfa
torization without pivoting are also appli
able to the 
ase of LU fa
torization with partialpivoting. The latter algorithm is the one 
ommonly implemented, but involves 
ompli
ationsthat have traditionally made its derivation 
oding a more intri
ate and time-
onsumingpro
edure.2.7.1 NotationLet Im denote the m�m identity matrix and ~Pm(i) be the m�m permutation matrix su
hthat ~Pm(i)A only swaps the �rst and ith rows of A. Here, we 
onsider an m�n matrix, A,where m � n and de�nePm(p0; p1; � � � ; pk�1) = � Ik�1 00 ~Pm�k+1(pk�1) � � � �� I1 00 ~Pm�1(p1) � ~Pm(p0)and Pm;i:j = Pm(pi; : : : ; pj). Here pk equals the index, relative to the top row of the 
urrentlya
tive matrix (ABR in previous dis
ussions), of the row that is swapped at the kth step ofLU fa
torization with partial pivoting. Thus Pm(p0; p1; � � � ; pk�1)A equals the matrix thatresults after swapping rows 0 and p0 followed by swapping rows 1 and p1 + 1, et
., in that36
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order. Also, Pm;i:jA equals the matrix that results after swapping rows i and pi followed byi+ 1 and pi+1 + 1, et
., in that order.It is well-known that LU fa
torization with partial pivoting produ
es the LU fa
-torization Pm;0:n�1A = LU (2.8)2.7.2 Derivation of the invariantsNow, let us examine the possible 
ontents of matrix ~Ak = PA, where P = Pm;0:k�1, thematrix as it has been overwritten partially into the LU fa
torization with partial pivoting.Equation 2.8 is equivalent to  Ik 00 Pm�k;k:n�1 ! ~Ak = LUor ~Ak =  Ik 00 QT !LUwhere Q = Pm�k;k:n�1Partitioning~Ak =  ~A(k)TL ~A(k)TR~A(k)BL ~A(k)BR ! ; L =  L(k)TL 0L(k)BL L(k)BR ! ; and U =  U (k)TL U (k)TR0 U (k)BR ! ;we �nd that ~A(k)TL ~A(k)TR~A(k)BL ~A(k)BR ! =  Ik 00 QT ! L(k)TL 0L(k)BL L(k)BR ! U (k)TL U (k)TR0 U (k)BR !=  L(k)TLU (k)TL L(k)TLU (k)TR~L(k)BLU (k)TL ~L(k)BLU (k)TR + ~L(k)BRU (k)BR !where LBL = Q~L(k)BL and LBR = Q~L(k)BR. Thus, for 0 � k < n, the equalities in Equa-tions 2.1{2.4 must again hold, ex
ept that L(k)BL, L(k)BR, and A(k), are now repla
ed by ~L(k)BL,~L(k)BR, and ~A(k), respe
tively. We mention, as before, that una

ented submatri
es of L andU denote �nal values. As for LU fa
torization without pivoting, di�erent 
onditions on the
ontents of Âk logi
ally di
tate di�erent variants for 
omputing the LU fa
torization withpartial pivoting. These are given in Table 2.1, with the provisos mentioned above. Noti
ethat in addition, a ne
essary 
ondition is that p0; : : : ; pk�1 have been 
omputed.The se
ond and third 
onditions listed in Table 2.1 are impra
ti
al sin
e the 
om-putation of p0; : : : ; pk�1 requires that the entries of L(k)BL be 
omputed. By taking entries 4through 6, listed in Table 2.1, together with the requirement that p0; : : : ; pk�1 have been37
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omputed, and using them as part of predi
ate P , three di�erent variants for LU fa
tor-ization with partial pivoting 
an be derived. These 
onditions again lead to 
olumn-lazy(left-looking), row-
olumn-lazy (Crout), and eager (right-looking) variants, respe
tively, thistime with partial pivoting in
orporated.2.7.3 Derivation of the eager algorithmLet us 
on
entrate on the eager algorithm. Noti
e, our assumption is that Âk holdsÂk =  LnU(k)TL U (k)TR~L(k)BL Â(k)BR ! = 0B� LnU (k)00 U (k)01 U (k)02~L(k)10 ~A(k)11 � ~L(k)10 U (k)01 ~A(k)12 � ~L(k)10 U (k)02~L(k)20 ~A(k)21 � ~L(k)20 U (k)01 ~A(k)22 � ~L(k)20 U (k)02 1CA :The desired 
ontents of Âk+b are given byÂk+b =  LnU(k+b)TL U (k+b)TR�L(k+b)BL Â(k+b)BR != 0B� LnU (k)00 U (k)01 U (k)02L(k)10 LnU (k)11 U (k)12�L(k)20 �L(k)21 �A(k)22 � �L(k)20 U (k)02 � �L(k)21 U (k)12 1CAwhere, Q1 = Pm�k;k:k+b�1, �A(k)BR = Q1 ~A(k)BR, and  �L(k)10�L(k)20 !  Q1 ~L(k)10~L(k)20 !. Note thatLnU (k)11 and L(k)21 are de�ned by Equation 2.9, below, and L(k)10 = �L(k)10 .With some e�ort it 
an be veri�ed that the following updates have the desired e�e
t:� Compute Q1, given by fpk; : : : ; pk+b�1g, L(k)11 , U (k)11 , and �L(k)21 su
h that Â(k)11Â(k)21 ! =  L(k)11�L(k)21 !U (k)11 (2.9)overwriting  Â(k)11Â(k)21 !  LnU (k)11�L(k)21 !� Permute and overwrite:  Â(k)10Â(k)20 ! Q1 ~L(k)10~L(k)20 !.� Permute and overwrite:  Â(k)12Â(k)22 ! Q1 Â(k)12Â(k)22 !.� Update Â(k)12  U (k)12 = L�1(k)11 Â(k)12 and Â(k)22  Â(k)22 � �L(k)21 U (k)12 .38
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Partition A = � ATL ATRABL ABR � and p = � pTpB �where ATL is 0� 0 and pT has 0 elementsdo until ABR is 0� 0Determine blo
k size bPartition� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !where A11 is b� bPartition� pTpB �= p0p1p2 !where p1 has b elementsPartitionABR = � A(1)BR A(2)BR �where A(1)BR has width b.hA(1)BR; p1i h� LnU11L21 � ; p1i = LUpiv(A(1)BR)ABL  P (p1)ABLA(2)BR  P (p1)A(2)BRA12  U12 = L�111 A12A22  A22 � L21U12Continue with� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !� pTpB �= p0p1p2 !enddoFigure 2.8: Eager blo
ked LU fa
torization with partial pivoting.
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1 void FLA_LU( FLA_Obj A, FLA_Obj ipiv, int nb_alg )2 {3 < de
larations >45 FLA_Part_2x2( A, &ATL, /**/ &ATR,6 /* ************** */7 &ABL, /**/ &ABR,8 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL );9 FLA_Part_2x1( ipiv, &ipivT,10 /* ****** */11 &ipivB,12 /* with */ 0, /* length submatrix */ FLA_TOP );1314 while (b = min(min( FLA_Obj_length(ABR), FLA_Obj_width(ABR)), nb_alg))15 {16 FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, /**/ &A01, &A02,17 /* ************* */ /* ********************* */18 /**/ &A10, /**/ &A11, &A12,19 ABL, /**/ ABR, &A20, /**/ &A21, &A22,20 /* with */ b, /* by */ b, /* A11 split from */ FLA_BR );21 FLA_Repart_2x1_to_3x1( ipivT, &ipiv0,22 /* ***** */ /* ***** */23 &ipiv1,24 ipivB, &ipiv2,25 /* with */ b, /* length ipiv1 split from */ FLA_BOTTOM );26 FLA_Part_1x2( ABR, &ABR_1, &ABR_2,27 /* with */ b, /* width submatrix */ FLA_LEFT );28 /*************************************************************************/2930 if ( nb_alg <= 4 ) FLA_LU_level2(ABR_1, ipiv1);31 else FLA_LU (ABR_1, ipiv1, nb_alg/2);3233 FLA_Apply_pivots(FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipiv1, ABL);34 FLA_Apply_pivots(FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipiv1, ABR_2);35 FLA_Trsm(FLA_SIDE_LEFT, FLA_LOWER_TRIANGULAR,36 FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,37 ONE, A11, A12);38 FLA_Gemm(FLA_NO_TRANSPOSE,FLA_NO_TRANSPOSE, MINUS_ONE,A21,A12,ONE,A22);3940 /*************************************************************************/41 FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, A01, /**/ A02,42 /**/ A10, A11, /**/ A12,43 /* ************** */ /* ****************** */44 &ABL, /**/ &ABR, A20, A21, /**/ A22,45 /* with A11 added to submatrix */ FLA_TL );46 FLA_Cont_with_3x1_to_2x1( &ipivT, ipiv0,47 ipiv1,48 /* ***** */ /* ***** */49 &ipivB, ipiv2,50 /* with ipiv1 added to */ FLA_TOP );51 }52 } Figure 2.9: FLAME re
ursive LU fa
torization with partial pivoting.
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In Fig. 2.8 we show how an eager blo
ked LU fa
torization with partial pivoting
an be expressed in our algorithmi
 format. In this algorithm, the operation LUpiv(B)returns the result of an LU fa
torization with partial pivoting of matrix B, as well as thepivot indi
es. In that �gure, p1 is a ve
tor of pivot indi
es and P (p1) takes the pla
e ofPm�k;k:k+b�1.An unblo
ked algorithm results when the blo
k size, b, is always 
hosen to equalunity. In this 
ase, the operationhA(1)BR; p1i " LnU11L21 ! ; p1# = LUpiv(A(1)BR) (2.10)is repla
ed by a determination of the index of the element in ve
tor A(1)BR, followed by a swapof that element with the �rst element of that ve
tor, and �nally a s
aling of the elements ofA21 by 1=A11. (Noti
e that now A21 is a ve
tor and A11 is a s
alar.) In other words, theoperation in Equation 2.10 is repla
ed byChoose p1 s.t. j hA(1)BRip1 j = maxi j hA(1)BRii jSwap hA(1)BRi1 $ hA(1)BRip1A21  L21 = A21=A11Here [x℄i indi
ates the ith element of ve
tor x. It is important to realize that multiplepartitionings of the same matrix referen
e the same data. Thus after swapping the elementsof A(1)BR, A11 
ontains what was hA(1)BRip1 before the swap.2.7.4 ImplementationA FLAME implementation of the blo
ked algorithm in Fig. 2.8 is given in Fig. 2.9. Noti
ethat a FLAME implementation of the unblo
ked algorithm would look similar. Let usassume that the latter is 
orre
tly implemented in the FLAME routinevoid FLA_LU_level2( FLA_Obj A, FLA_Obj ipiv )Now, the 
orre
tness of algorithm in Fig. 2.8 depends only on the 
orre
tness of the LUfa
torization with partial pivoting of A(1)BR and the other operation. Thus, there is theoption of implementing the LU fa
torization of the panel A(1)BR as a re
ursive 
all to thegiven routine (line 31). Only when the panel be
omes very small is a routine that useslevel-2 BLAS (matrix-ve
tor 
omputations) 
alled (line 30).Noti
e that the implementation is very 
exible in that it is neither purely re
ursivenor purely iterative. By playing with the algorithmi
 blo
k size b (nb alg), one 
an attain apurely re
ursive algorithm (when b = n=2 for an m�n input matrix A), purely iterative (byalways 
alling FLA LU level2 for the subproblem) or an iterative algorithm that re
ursively
alls itself. An indu
tion on the level of the re
ursion would establish the 
orre
tness of thegiven 
ode. A more detailed dis
ussion on the 
orre
tness of re
ursively formulated linearalgebra algorithms 
an be found in [49, 29℄. 41
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SYMM C  �(L+ L̂T )B + �C C  �(U + ÛT )B + �CC  �B(L+ L̂T ) + �C C  �B(U + ÛT ) + �CSYRK lo(C) �lo(AAT ) + �lo(C) up(C) �up(AAT ) + �up(C)lo(C) �lo(ATA) + �lo(C) up(C) �up(ATA) + �up(C)SYR2K lo(C) �lo(ABT +BAT ) + �lo(C) up(C) �up(ABT +BAT ) + �up(C)lo(C) �lo(ATB +BTA) + �lo(C) up(C) �up(ATB +BTA) + �up(C)TRMM B  �LB B  �LTB B  �UB B  �UTBB  �BL B  �BLT B  �BU B  �BUTTRSM B  �L�1B B  �L�TB B  �U�1B B  �U�TBB  �BL�1 B  �BL�T B  �BU�1 B  �BU�TFigure 2.10: Level-3 BLAS operations implemented as part of the produ
tivity experiment.2.8 ExperimentsIn this se
tion, we report the results of three di�erent experiment. The �rst measures the im-pa
t that the FLAME approa
h has on produ
tivity. The se
ond experiment demonstratesFLAME make the implementation of high-performan
e linear algebra algorithms more a
-
essible to novi
es. In the �nal experiment we demonstrate that the attained performan
eis superb.2.8.1 Produ
tivity experimentAs an experiment to measure, albeit roughly, the degree to whi
h FLAME redu
es 
odedevelopment time, one of the authors implemented all level-3 BLAS operations given inFig. 2.10 in terms of matrix-matrix multipli
ation. This exer
ise 
an easily require monthsto 
omplete, even by a programmer who is experien
ed in the implementation of su
h oper-ations. This in
ludes time spent on extensive testing of 
orre
tness of the implementations.The entire library of operations was 
ompleted using FLAME in a matter of about tenhours, in
luding testing. As of this writing, we have used the resulting library for aboutnine months without en
ountering a bug in the implementations. The resulting 
ode isin
luded on the FLAME webpage given at the end of this paper. The prototype imple-mentation of FLAME required to support the implementations of the level-3 BLAS tookapproximately one man-week.It should be noted that the number of lines of 
ode required for the implementationis not ne
essarily less than that required for a more 
onventional implementation. This isalready evident when 
onsidering Figs. 2.5 and 2.7. However, the e�ort is greatly redu
edby the fa
t that the subroutines for the di�erent operations use similar 
ode skeletons.Moreover, we believe that the resulting 
ode is substantially more readable.
42
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2.8.2 A

essibility experimentIt is our 
laim that the FLAME approa
h to the derivation and implementation of linearalgebra algorithms greatly simpli�es the development of linear algebra libraries. To demon-strate this, we handed a re
ipe for deriving algorithms, similar to the one in Se
tion 2.5,to a 
lass of 
omputer s
ien
e undergraduates at UT-Austin. These students had a limitedba
kground in linear algebra and essentially no ba
kground in high-performan
e 
omput-ing. Using the FLAME approa
h they implemented blo
ked algorithms for linear algebraoperations that are part of the level-3 BLAS. The results of this experiments 
an be foundin [43℄.2.8.3 Performan
e experimentTo illustrate that 
orre
tness, simpli
ity and modularity does not ne
essarily 
ome at theexpense of performan
e, we measured the performan
e of the LU fa
torization with pivotinggiven in Fig. 2.9 followed by forward and ba
kward substitution, i.e., essentially the LIN-PACK ben
hmark. For 
omparison, we also measured the performan
e of the equivalentoperations provided by ATLAS R3.2 [76℄.Some details: Performan
e was measured on an Intel (R) Pentium (R) III pro
essor-based laptop with a 256K L2 
a
he running the Linux (Red Hat 6.2) operating system. All
omputations were performed in 64-bit (double pre
ision) arithmeti
. For both implemen-tations the same 
ompiler options were used.In Fig. 2.11 we report performan
e for four di�erent implementations, indi
ated bythe 
urves markedATLAS: This 
urve reports performan
e for the LU fa
torization provided by ATLAS R3.2,using the BLAS provided by ATLAS R3.2.ATL-FLAME: This 
urve reports the performan
e of our LU fa
torization 
oded using FLAMEwith BLAS provided by ATLAS R3.2. The outer-most blo
k size used for the LU fa
-torization is 160 for these measurements. (Noti
e that multiples of 40 are optimal forthe ATLAS matrix-matrix multiply on this ar
hite
ture.)ITX-FLAME: Same as the previous implementation, ex
ept that we provided our own op-timized matrix-matrix multiply (ITXGEMM). Details of this optimization are thesubje
t of another paper [42℄. This time the outer-most blo
k size was 128. (No-ti
e that multiples of 64 are optimal for the ITXGEMM matrix-matrix multipli
ationroutine on this ar
hite
ture.)ITX-FLAME-opt: Same as the ITX-FLAME implementation, ex
ept that we optimized thelevel-2 BLAS based LU fa
torization of an intermediate panel as well as the pivotroutine by not using the high-level FLAME approa
h for those operations. For theseroutines we 
all DSCAL, DGER, and DSWAP dire
tly.For all implementations, the forward and ba
kward substitutions are provided by the ATLASR3.2 DTRSV routine. 43
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Figure 2.11: Performan
e of LU fa
torization with pivoting followed by forward and ba
k-ward substitution.Noti
e that for small matri
es the performan
e of ATL-FLAME is somewhat inferior tothat of ATLAS, due to the overhead for manipulating the obje
ts that en
ode the informa-tion about the matri
es. This is due to the fa
t that this manipulation of obje
ts introdu
esan O(n) overhead whi
h is amortized over a 
omputational 
ost that is O(n3). When thelevel-2 BLAS based LU fa
torization is 
oded without this overhead, the performan
e is
omparable for small matri
es. The performan
e boost witnessed when the ITXGEMMmatrix-matrix multiply kernel is used is entirely due to the superior performan
e of thatkernel, relative to the ATLAS DGEMM implementation.It is important to realize that the performan
e di�eren
e between the implementa-tion o�ered as part of ATLAS R3.2 and our own implementation is not the point of thisperforman
e 
omparison or, more generally, of this paper. With some e�ort either imple-mentation 
an be improved to mat
h the performan
e of the other. Our primary point isthat FLAME enables one to expend markedly less time to implement these algorithms ina provably 
orre
t manner. At the same time, the resulting implementation attains perfor-44
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man
e 
omparable to that of, what are widely 
onsidered to be, standard high-performan
eimplementations.2.9 Related WorkLibraries for dense linear algebra operations have often led advan
es in software engineeringfor s
ienti�
 appli
ations. The �rst su
h pa
kage to a
hieve widespread use and to embodynew te
hniques in software engineering was EISPACK [68℄. EISPACK was also likely the�rst su
h pa
kage to pay 
areful attention to the numeri
al stability of the underlying algo-rithms. The mid-1970s witnessed the introdu
tion of the Basi
 Linear Algebra Subprograms(BLAS) [55℄. At that time, the BLAS were a set of ve
tor operations that allowed libraries toattain high performan
e on ve
tor super
omputers while remaining highly portable betweenplatforms, simultaneously enhan
ing modularity and 
ode readability. The �rst su

essfullibrary to exploit these BLAS was LINPACK [22℄. By the mid-1980s, it was re
ognizedthat in order to over
ome the gap between pro
essor and memory performan
e on modernmi
ropro
essors it was ne
essary to reformulate matrix operations in terms of matrix-matrixmultipli
ation-like operations, the level-3 BLAS [25℄. LAPACK [5℄, �rst released in the early1990s, is a high-performan
e pa
kage for linear algebra operations written in terms of thelevel-3 BLAS. LAPACK o�ers a fun
tionality that is a super set of LINPACK and EIS-PACK while a
hieving high performan
e on essentially all sequential and shared-memoryar
hite
tures in a portable fashion.A major simpli�
ation in the implementation of the level-3 BLAS themselves 
amefrom the observation that they 
an be 
ast in terms of optimized matrix-matrix multipli-
ation [1, 47, 52℄. Further, the performan
e of the resulting more portable system was
omparable to the vendor-supplied BLAS in many 
ases.With the advent of distributed-memory parallel ar
hite
tures, a parallel versionof LAPACK, S
aLAPACK [15℄, was developed. A major design goal of the S
aLAPACKproje
t was to preserve and re-use as mu
h 
ode from LAPACK as possible. Thus, all layersin the S
aLAPACK software ar
hite
ture are designed to resemble similar layers in theLAPACK software ar
hite
ture. It was this de
ision that 
ompli
ated the implementationof S
aLAPACK. The introdu
tion of data distribution (a
ross memories) 
reates a problemanalogous to that of 
reating and maintaining the data stru
tures required for storing sparsematri
es. The mapping from indi
es to matrix element(s) was no longer a simple one.Combining this 
ompli
ation with the monolithi
 stru
ture of the software led to 
ode thatwas laborious to 
onstru
t and is diÆ
ult to maintain. Our own Parallel Linear AlgebraPa
kage (PLAPACK) a
hieves a fun
tionality similar to that of S
aLAPACK, targeting thesame distributed-memory ar
hite
tures while using a FLAME-like approa
h to hide detailsrelated to indexing into and distribution of matri
es [74℄. Indeed, the primary inspirationfor FLAME 
ame from PLAPACK.A number of re
ent e�orts have explored the notion of utilizing hierar
hi
al datastru
tures for storing matri
es [4, 46, 48℄. The 
entral idea is that, by storing matri
es byblo
ks rather than by row- or 
olumn-major ordering, data preparation (
opying) for good45
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a
he re-use is virtually eliminated. Combining this with re
ursive algorithms that exploitthis data stru
ture, impressive performan
e improvements have been demonstrated. Noti
ethat more 
omplex data stru
tures for sequential algorithms introdu
e a 
omplexity similarto that en
ountered when data is distributed to the memories of a distributed-memoryar
hite
ture. Sin
e PLAPACK e�e
tively addressed that problem for those ar
hite
tures,we have strong eviden
e that FLAMBE 
an be extended to a

ommodate more 
omplexdata stru
tures in the 
ontext of hierar
hi
al memories.2.10 Chapter SummaryA 
olleague of ours, Dr. Timothy Mattson of Intel, re
ently made the following observation:\Literature professors read literature. Computer S
ien
e professors should, at least o

a-sionally, read 
ode." When one does this, 
ertain patterns emerge and one tends to be
omemore readily able to distinguish good 
ode from bad.In this 
hapter, we have illustrated that a more formal approa
h to the designof matrix algorithms, 
ombined with the right level of abstra
tion for 
oding, leads to asoftware ar
hite
ture for linear algebra libraries that is dramati
ally di�erent from the onethat resulted from the more traditional approa
hes used by pa
kages su
h as LINPACK,LAPACK, and S
aLAPACK. The approa
h is su
h that the library developer is for
ed togive 
areful attention to the derivation of the algorithm. The bene�t is that the 
ode is adire
t translation of the resulting algorithm, redu
ing opportunities for the introdu
tion of
ommon bugs related to indexing. Our experien
e shows that there is no signi�
ant lossof performan
e. Indeed, sin
e more variants for a given operation 
an now be more easilydeveloped we often observe a performan
e bene�t from the approa
h.Let us again examine the observations of Dijkstra:(i) When exhaustive testing is impossible {i.e., almost always{ our trust 
an onlybe based on proof (be it me
hanized or not).(ii) A program for whi
h it is not 
lear why we should trust it, is of dubiousvalue.In this 
hapter, and through years of experien
e writing parallel linear algebra libraries, wehave learned this lesson the hard way. While a large per
entage of 
ode and an even largerper
entage of e�ort was devoted to the development of test 
ode for pa
kages like LAPACKand S
aLAPACK, we believe that the more formal and systemati
 approa
h that under-lies FLAMBE and PLAPACK has redu
ed the need for su
h testing, while simultaneouslyin
reasing our 
on�den
e in the implementation.(iv) Given the proof, deriving a program justi�ed by it, is mu
h easier than,given the program, 
onstru
ting a proof justifying it.Noti
e that our approa
h 
arefully derives the program, making the proof of its 
orre
tnessan inherent part of its derivation. 46
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(iii) A program should be stru
tured in su
h a way that the argument for its
orre
tness is feasible and not unne
essarily laborious.Sin
e the 
ode re
e
ts the algorithm, the argument that the algorithm is 
orre
t 
arries overto an argument that the 
ode is 
orre
t.Throughout this 
hapter we have fo
used on the 
orre
tness of the algorithm. This isnot the same as proving that the algorithm is numeri
ally stable. While we do not 
laim thatour methodology automati
ally generates stable algorithms, we do 
laim that the skeletonused to express the algorithm, and to implement the 
ode, 
an be used to implement knownalgorithms with known numeri
al stability properties. It also fa
ilitates the dis
overy andimplementation of new algorithms for whi
h numeri
al properties 
an then be subsequentlyestablished.
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Chapter 3From Variant to MultipleVersionsThis 
hapter introdu
es a 
oding environment that allows the user to implement algorithmsin a higher level language than FLAMBE (seen in Chapter 2). This language, dubbed\PLAWright," is the interfa
e to the automated system, the PLANALYZER, dis
ussed inthe next three 
hapters of this dissertation. The reader is referred to Figure 3.1. In this�gure, the automated 
omponents of this dissertation are depi
ted in an abbreviated form.This 
hapter fo
uses on, the \High-level Program," whi
h is to be input.Subsequent 
hapters demonstrate that this programming approa
h does not requireone to forsake performan
e 
onsiderations when moving to a 
omputational environment.In this 
hapter, the fo
us is on the high level of abstra
tion in programming whi
h frees theuser from many low-level 
on
erns. This allows the programmer to utilize algorithms thatbear the promise of in
reased performan
e, but might have been overlooked be
ause of therequired investment in programming, debugging, and maintenan
e time and e�ort [7℄.3.1 MotivationThere are a number of reasons to adopt the 
oding style delineated in this 
hapter. Some ofthose motivating fa
tors present themselves in the 
ontext of sequential systems while othersare made apparent only when distributed 
omputational environments are 
onsidered. Theissues and diÆ
ulties asso
iated with traditional approa
hes are dis
ussed here along withan overview of the solution advo
ated in this work.3.1.1 Coding Matrix Algorithms: The Sequential WorldThere are two traditional strategies for 
oding sequential matrix algorithms:1. Simple indexing into the original array [22℄ and48
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Figure 3.1: Overview of the PLANALYZER2. Indexing 
ombined with a standard library supplying 
omputational kernels [5℄ su
has the Basi
 Linear Algebra Subprograms (BLAS) [26, 25℄.Problems with Traditional Approa
hesAs has been mentioned, both of these approa
hes share the same short
omings. Both ap-proa
hes require that one keep tra
k of where in the matri
es the 
omputations are o

urring.The amount of bookkeeping required to do this as algorithms be
ome more sophisti
atedis daunting and error-prone. In order to avoid mounting design and maintenan
e 
osts,algorithms that are more ambitious are often abandoned for this reason.Noti
e that the original derivation of these algorithms does not involve these indi
es.It is the attempt to mesh two ways of viewing matri
es that appears to 
ause the problem.3.1.2 Coding Matrix Algorithms: Extending to ParallelTraditionally, extending a library [15℄ or an integrated development environment [72℄ to aparallel environment has involved the goal of maximizing 
ode re-use. Some newer softwaresystems [19℄ appear to view this goal as se
ondary and they provide some tools for theintegration of alien modules.In 
ontrast, software systems with a more 
oherent \vision," su
h as PETS
 [9℄ andPLAPACK [74℄, take a more uni�ed view of the 
omputational environment and present the49
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user with a library that has a more 
onsistent interfa
e. These libraries also avoid the pitfallof hiding parallelism in order to avoid added 
omplexity. They expose levels of parallelismto the algorithmi
 designer in a 
exible manner [8℄.Problems with Traditional Approa
hesWhile the re-use of existing library 
omponents is a laudable goal, we think that it isunne
essarily 
onstri
ting. For example, the S
aLAPACK proje
t [15℄ attempts to makemaximal re-use of LAPACK [5℄ 
omponents. This approa
h for
es one to view parallel
omputational systems as vastly more 
omplex than sequential systems. While it is truethat su
h ar
hite
tures are somewhat more 
ompli
ated, it is the adaptation of sequentiallibraries to parallel environments that 
auses many programming errors. The troublesomeartifa
ts of su
h adaptation in
lude lengthening parameter lists and poorly do
umentedintera
tions between levels of both hardware and software.The se
ond error that 
an be seen in the design of some of these software pa
kagesis an unfortunate 
oupling of 
omputation and 
ommuni
ation libraries. An example isS
aLAPACK's initial 
oupling with the Basi
 Linear Algebra Communi
ation Subprograms(BLACS) [6℄ routines. While part of the problem rested in the non-modular nature of su
h atightly-
oupled arrangement, a more profound penalty is in
urred by the limited breadth ofabstra
tion. Some 
ommuni
ations patterns that are not supported by the BLACS libraryarise naturally in parallel linear algebra routines. An example is the BLACS library'sinability to redistribute an n� 1 matrix obje
t a
ross the entire pro
essor grid (i.e. viewthe grid as a linear pro
essor array). This operation is often important for load-balan
e inlinear algebra solver algorithms [28℄.3.1.3 Proposed SolutionIf the sour
e of the problem is the intera
tion between design systems and abstra
tion setsthat are in
ompatible, it makes sense to eliminate this 
on
i
t. The development of anabstra
tion set that re
e
ts the derivation of the algorithms 
an minimize the severity ofthis 
on
i
t.The proposed solution for addressing the diÆ
ulties in the parallel environment isto 
ouple the philosophy of libraries, su
h as PLAPACK, with the ease of programmingavailable in environments su
h as the one provided by MATLAB [58℄. This allows the userto exploit or insulate themselves from the details of the parallel programming environment.Allowing the user to 
ode in this manner is not only easier on the user, but allows the userto implement algorithms that are more sophisti
ated.Chapter 2 demonstrated that the goal of 
oupling the design system and the ab-stra
tion set available to the implementor is a
hievable using 
onventional languages. Giventhe initial derivation, and the problems expounded above, it seems that many of the prob-lems en
ountered 
ould be obviated if one were allowed to 
ode in a format su
h as theone depi
ted in Figure 3.2. The same s
ript may be translated into 
ode that operates on asingle pro
essor or into 
ode that operates on multiple pro
essors. In this 
ase, the eÆ
ien
y50
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of the resulting 
ode relies on the sophisti
ation of the translator and the underlying library.In addition, as is dis
ussed in Se
tion 3.1.4, the same software system allows the user toimplement both other variants (Figure 3.3) of the algorithm as well as spe
ialized versions(Figure 3.4) while programming in the same style.1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ; // (* Same as non-unit *)3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is implied21 A01 = U01 <- L00^-1 * A01 ;22 A10 = L10 <- A10 * U00^-1 ;23 A11 = (L11\U11) <- A11 - L10 * U01 ;24 A11 = (L11\U11) <- lu_fa
t(A11) ;25 partition26 / ATL # ATR \27 |###########|28 \ ABL # ABR / <= / A00 | A01 # A02 \29 |------------------|30 | A10 | A11 # A12 |31 |##################|32 \ A20 | A21 # A22 / ;33 enddo;34 L =!= A;35 U =!= A;Figure 3.2: Computer-readable s
ript for Lazy version of LU fa
torizationNoti
e that both Figure 3.3 and Figure 3.4 illustrate the exe
utable form of the Eagerversion of the LU de
omposition. While both �gures 
orrespond to the algorithm presentedin Figure 2.3 (a) on page 27, the latter is not a \vanilla" form of the variant. It is whatI refer to as a version of that variant; in this 
ase, the version is only slightly spe
ialized.This version 
ontains a dire
tive intended to result in data lo
ality in a distributed-memory
omputational environment. A dis
ussion regarding the import of su
h spe
ializations isdelayed until Chapter 4. 51
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1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ;4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is nb by nb ; // No larger than is implied19 A11 = (L11\U11) <- lu_fa
t(A11) ;20 A12 = U12 <- L11^-1 * A12 ;21 A21 = L21 <- A21 * U11^-1 ;22 A22 <- A22 - L21 * U12 ;23 partition24 / ATL # ATR \25 |###########|26 \ ABL # ABR / <= / A00 | A01 # A02 \27 |------------------|28 | A10 | A11 # A12 |29 |##################|30 \ A20 | A21 # A22 / ;31 enddo;32 L =!= A;33 U =!= A;Figure 3.3: Computer-readable/PLAWright-
ompilable s
ript for the Eager variant of LUfa
torization
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1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is implied2122 A11 = (L11\U11) <- lu_fa
t(A11) ;23 A12 = U12 <- L11^-1 * A12 ;24 A21 = L21 <- A21 * U11^-1 ;25 A22 <- A22 - L21 * U12 ;26 partition27 / ATL # ATR \28 |###########|29 \ ABL # ABR / <= / A00 | A01 # A02 \30 |------------------|31 | A10 | A11 # A12 |32 |##################|33 \ A20 | A21 # A22 / ;34 enddo;35 L =!= A;36 U =!= A; Figure 3.4: S
ript for Eager version of parallel LU fa
torization
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Figure 3.5: Where PLAWright �ts into the \grand s
heme" of things.3.1.4 Where PLAWright Fits InLet us re
onsider Figure 1.1, the \Big Pi
ture" illustrated on page 5 of Chapter 1. Whilethe FLAME development methodology is systemati
, it is not automated. Therefore, thereis something of a 
ognitive break between FLAME and the remainder of the programmingenvironment dis
ussed in this dissertation. After the variants are produ
ed by the FLAMEmethodology, the pro
ess is entirely me
hanized. The PLAWright Composer marks thepoint of demar
ation between systematization and me
hanization.Automation is desirable in this area be
ause it allows the programmer to fo
us theire�orts on 
reating algorithms instead of translating these algorithms into 
ode. PLAWrightallows the user to produ
e versions of the di�erent 
oding variants (see Figure 3.5, ahead).The language also serves to enfor
e some level of programming dis
ipline. This dis
ipline
omes about be
ause the language of the s
ripts has a syntax that 
an be expressed interms of a 
ontext-free-grammar (CFG). In our implementation, the CFG is en
oded in thelanguage of the ANTLR [61, 62℄ 
ompiler tool.3.2 IssuesThere are a number of 
onsiderations that a�e
t the design of a domain-spe
i�
 language.The language should 
apture the 
entral abstra
tions involved in the domain, retain somelevel of 
exibility and extensibility, and be of a form that 
an be automati
ally translatedinto an exe
utable. In this se
tion we dis
uss these issues.54
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3.2.1 Abstra
tionEase-of-use is an important property in a linear algebra library. Unfortunately, this propertyhas often been either ignored or relegated to a position of minor importan
e. On the onehand, the reason for this is simple and not, entirely, in
orre
t: performan
e is important.People do not use a \friendly" appli
ation library for 
ode-development if its performan
e
hara
teristi
s are una

eptably poor. On the other hand, people like to use su
h program-ming environments (e.g. MATLAB) for proof-of-
on
ept designs. Therefore, it makes senseto utilize multiple levels of abstra
tion in a mathemati
al library.Su
h levels, optimally, present a somewhat uni�ed interfa
e to the library user.However, it is often the 
ase that di�erent levels in su
h a library 
annot be 
ompletely 
on-gruent [15℄ in that they 
annot all take the same arguments or argument types. Nonetheless,it is usually possible to present the user with understandable \variations on a theme" inthese 
ases if one starts with a systemati
 approa
h to the entire library.Why Level Consisten
y Is ImportantAn important 
omponent of the systemati
 approa
h that enables this 
onsisten
y betweenprogramming layers lies in the devising of a set of useful abstra
tions to des
ribe the algo-rithms under 
onsideration. Sele
ting the right abstra
tions gives one the ability to expressalgorithms in a 
ompa
t and understandable manner. Further, it allows for a 
onsistentvo
abulary when dis
ussing algorithms at various levels of detail.Important Con
eptsBe
ause this dissertation largely ignores issues of memory hierar
hy until Chapter 5 (seepage 64), it should 
ome as no surprise that there are few general abstra
tions involved indesigning dense linear algebra algorithms. Only three appear ne
essary for our purposes.Obje
t manipulation and (data) 
omponent 
omputation are required in the previouslypresented algorithms. Obje
t property transformations are somewhat hidden, but are alsone
essary. Here, the terms obje
t and 
omponent have di�erent meanings. An obje
tin
ludes both the data 
omponent and the other properties of the operand (e.g. size).The 
omponent is the raw data on whi
h mathemati
al operations are performed. Themanipulation of and 
omputation on obje
ts in
uen
es the 
orresponding properties of thoseobje
ts. Thus, one 
ould 
onsider a 
omputation to involve the entire obje
t. The problemwith this view is that the property 
omputations are of a very di�erent nature than the data
omputations. Further, the data 
omputations are well understood; while, traditionally, theproperty transforms have been either ignored or made almost entirely impli
it. Chapter 4,whi
h deals with automati
 
ode generation (and spe
ialization) presents a 
ase for makingthese property transformations expli
it.For a 
on
rete example that involves these issues, let us 
onsider the Eager variantof LU-de
omposition that is illustrated in Figure 3.6:The entire algorithm relies upon two things:55
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partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0repartition� ATL ATRABL ABR � = 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Awhere A11 is nb by nbA11  LU fa
t.(A11)A12  U12 = L�111 A12A21  L21 = A21U�111A22  A22 � L21U12
ontinue with� ATL ATRABL ABR � = 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Aenddo Figure 3.6: Eager approa
h to LU fa
torization (paraphrased)1. How to delimit a blo
k of an operand and2. The manner in whi
h these operand blo
ks intera
tI think that this �gure depi
ts a natural way to express su
h an algorithm. However,as I restri
t the programming environment to the ASCII domain, the goal of this work isto allow the input form to mat
h that illustrated in Figure 3.3. The following se
tionsdemonstrate how this goal 
an be a
hieved in an implementation.Obje
t Manipulation Linear algebra routines typi
ally involve matri
es, ve
tors, ands
alars. The number of operands involved in an algorithm depends upon the algorithm under
onsideration. The \nature" of su
h obje
ts in
ludes their instantiation and individuality.For example, in the LU de
omposition there are 
on
eptually three obje
ts, all matri
es,A, L, and U . A is instantiated (has size, values et
.) when routine begins, while L andU are not. Also, while we may 
onsider the three matri
es to be distin
t entities for thepurposes of deriving equations, the algorithms shown in Chapter 2 were 
omposed underthe restri
tion that L and U overwrote A as the algorithms progressed. This 
o-lo
ation ofdata in
uen
es the manner in whi
h algorithms are 
onstru
ted.These issues motivate all of the obje
t manipulation primitives that are required forthe subset of dense linear algebra algorithms under 
onsideration in this do
ument. Therest of this se
tion examines the manipulators needed. Although obje
t properties, su
has being lower-triangular, may be a�e
ted by both manipulation and 
omputation they56
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are 
onsidered a separate abstra
tion and not as a fa
et of either the other two nor as anemergent artifa
t of their intera
tion.The �rst abstra
tion needed is 
o-referen
e to an existing obje
t. While other ma-nipulations 
an be \abused" to yield this operation, our goal here is not the 
onstru
tionof a minimal set of primitives, but the 
reation of a small and useful set. The need of thisoperation o

urs at the very beginning of the LU de
omposition algorithm and is relatedto the previously dis
ussed 
o-lo
ation property. The LU algorithm begins with a singlematrix, A, that is to be fa
tored into two matri
es L and U . Be
ause L and U eventuallyo

upy the same spa
e as A, the logi
al thing to do is to view A as sharing 
omponentswith L and U .The next manipulator to be 
onsidered is the one that performs (re-)partitioning.After we have all of the obje
ts that we need to 
arry out the algorithm, we need to beable to refer to di�erent subsets of the obje
ts. In the 
ases presented in this dissertation,the situation is even simpler, as we wish to be able to \name" only 
ontiguous parts of thedata 
omponents of the obje
ts under 
onsideration. Be
ause we may begin with a two-dimensional matrix and wish to 
onsider a two-dimensional submatrix of the same obje
t,it seems that two abstra
tions are required: splitting the obje
t verti
ally and splitting theobje
t horizontally. In addition to the dire
tion of the split, the size of the resulting obje
twould also need to be spe
i�ed in the realization of this abstra
tion. Further, if a matrix
an be de
omposed through splitting, we should also have the ability to 
ombine parts of amatrix, or ve
tor, in order to 
reate a new obje
t.Clari�
ation and Justi�
ation There are some unanswered questions regarding theabstra
tions given above. Some of these ambiguities involve the issue of 
o-referen
e. The�nal question 
on
erns the dire
tion of assignment involved in ea
h type of abstra
tion.In Figure 3.3 we for
ed L to 
o-referen
e A. This has the same out
ome as splittingA into some number of obje
ts where all but one of the obje
ts has a nil size (0� 0). Whilesu
h a split is valid, there is a drawba
k to this approa
h: it does not mat
h the algorithmsas they were presented in Chapter 2. Also, while it is true that the algorithms 
ould be re-written to use this \zero-split" 
o-referen
e, it is our 
ontention that this would be somewhatless intuitive than the alternative.Another 
o-referen
e ambiguity involves the s
ope of the operations and 
onditions.Consider that we state that L 
o-refers to (the lower-triangular part of) A. While it doesnot arise in the presented algorithm, we may later wish to partition L in one way and A inanother. The language used must provide some way to distinguish between permanent andtemporary 
o-referen
es. In PLAWright, the synta
ti
 distin
tion involves the use of === toindi
ate a \lo
ked," re
ursive equality and == to indi
ate a temporary equality.Issues regarding the \dire
tion" of assignments must also be 
onsidered. For exam-ple, if we were to employ A = L notation, it would be apparent that A was being assigned toL, as L was assumed to be non-instantiated. In order to make the semanti
s of the languageunambiguous in this regard there are at least three possibilities:1. Rely on input spe
i�
ations to indi
ate whi
h obje
ts are initialized.57
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2. Use positional queues. For example, in C, the line X = Y; unambiguously means thatY should be assigned to X. or3. Use operational queues (e.g. Y ) X and X ( Y would both assign Y to X).The �rst option is undesirable be
ause assignment may involve two initialized obje
ts, or,in the 
ase of an assigment that involved 
omposition, groups of obje
ts. Therefore, weeliminate the �rst option from 
onsideration. There seems to be no 
ompelling reason tofavor either of the other two 
onventions. While the third allows smaller synta
ti
 alterationsto the algorithmi
 des
ription to disambiguate the meaning of the 
ode, one might reasonablyargue that the se
ond alternative yields 
leaner 
ode. In any 
ase, we adopt the thirdalternative as the 
onvention in this dissertation and allow = to serve as something of a
omment that 
an be used as an assertion of operand 
ompatibility.Computation Only three 
omputational operators are required by the software systemdis
ussed in this do
ument. All three were used in the di�erent example derivations of theLU de
omposition algorithm: multipli
ation, (triangular) inversion, and addition.In a linear algebra library, one must expe
t to perform some form of matrix multi-pli
ation. This may be a matrix-matrix, a matrix-ve
tor, or a ve
tor-ve
tor multipli
ation.For the moment, let us only 
onsider the 
ases that are well-de�ned. That is, in the 
asewhere we wish to determine the value of A�B, A is of size m� k and B is of size k � n.In this 
ase, the primitive used 
orresponds to the standard matrix-matrix multipli
ationalgorithm.There are other 
ases that must be 
onsidered. The �rst su
h 
ase arises when theoperation is apparently not well-de�ned but one of the operands is a s
alar (a 1� 1 matrix).This operation needs its own semanti
s to determine if a given 
al
ulation is well-de�ned.Su
h an operation is 
onsidered well-de�ned if the obje
ts involved are initialized. Theother 
ases that must be 
onsidered are the result of matrix properties: matrix stru
tureand transposition status.A linear algebra obje
t may have many appli
able stru
tural spe
i�ers. However,only upper- and lower-triangular matri
es are 
onsidered in this do
ument. In both 
ases,only part of the matrix is 
onsidered to be de�ned. Operations involving su
h obje
ts mustnever refer to (read or write) the unde�ned portion of the obje
ts.Matrix inversion is often required in linear algebra. In the Eager LU de
ompositionalgorithm presented in this dissertation, it is used to determine A12 where A12 = L�111 A12,for instan
e.As matrix stru
ture has been 
onsidered in this se
tion, it should be pointed outthat the matrix inversion required for the LU algorithm(s) presented here is of a restri
tedtype: the inversion of a triangular matrix. As a pra
ti
al matter, true inversion would notbe performed due to the spe
ial stru
ture of the matrix under 
onsideration. Instead, theoperation would be implemented as a 
omputationally less expensive triangular solve. Thedetails are unimportant. The situation is highlighted simply be
ause it is an illustration ofthe distin
tion between abstra
tion and implementation.58
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The last two operators, matrix addition and matrix subtra
tion, are so similar that,given the s
alar multipli
ation dis
ussed above, only one is required. However, it is easierto dis
uss the algorithms when both are used, so both are in
luded. Both operations arewell-de�ned when both operands are of equal dimensions and have the same stru
ture.Property Manipulations While one may think that the 
on
epts of obje
t manipulationand 
omputation have some overlap, this is not the 
ase in this dissertation. Considerthe pre
eding se
tions. Manipulation involved a single data 
omponent while 
omputationreferred to obje
t intera
tion. The barrier between abstra
tion 
lasses be
omes somewhatmore diÆ
ult to draw when one 
onsiders obje
t properties.As has been mentioned, properties 
ould be 
onsidered as fa
ets of both manipula-tion and 
omputation. For reasons already dis
ussed, there are bene�ts to viewing them asseparate entities. However, even with this point-of-view in mind, we must not lose sight ofthe fa
t that both manipulations and 
omputations 
an a�e
t obje
t properties. Similarly,properties 
an a�e
t manipulations and 
omputations.While there are many potential obje
t properties, we 
onsider only a few. In thisdo
ument, there are only two properties that we 
onsider when dealing with obje
ts: sizeand shape.The size property spe
i�es the dimensions of the obje
t under 
onsideration. Thisproperty 
an be used for a number of things. Most fundamentally, it 
an be used duringthe intera
tion of two obje
ts to determine if the proposed intera
tion is well-de�ned.Shape properties 
an be used for the same purpose. Here, we 
onsider only a fewpossible shape (perhaps more properly 
alled \
onstituen
y") 
ategories. Among these are:full, empty, zero, and triangular. Empty is essentially the same as unspe
i�ed and the \otherhalf" of a triangular obje
t is treated as unspe
i�ed (uninitialized) during all 
omputationalintera
tions.There are also properties that may not be properly atta
hed to any one obje
t.For example, we have already dis
ussed the idea of a 
o-referen
e obje
t manipulation(i.e. establishing obje
t equivalen
e). Co-referen
ing 
an be viewed as a one- or two-wayrelationship. If we view it as a one-way relationship, one obje
t is \se
ondary" and theproperty may be atta
hed to either obje
t. However, if the relationship is 
onsidered to betwo-way, there are two 
hoi
es:1. The property 
an be atta
hed to both obje
ts or2. The obje
ts 
an be atta
hed to their mutual relationshipWe adopt the view that the relationship is two-way and the property is atta
hed to bothobje
ts.Finally, there is the transposition property to 
onsider. This property indi
ateswhether an obje
t exists in the transposed state, or if an obje
t is equivalent to the transposeof a se
ond obje
t (often, a \parent" obje
t). While this may arise from a transpositionoperation (a manipulation operation not previously 
onsidered), they are di�erent thingspre
isely be
ause the property 
an be atta
hed to an obje
t or deleted from that obje
t's59
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properties regardless of its \true" state. The transposed state 
hanges the appli
ability ofthe 
omputational manipulators in the expe
ted way.Iterators and Sele
tors Iteration and sele
tion are required in any mathemati
al pro-gramming language. The PLAWright language uses only one iterator :do until <
ondition>/enddo.Similarly, there is only one sele
tor:if<
ondition>-then-else,a 
onstru
t that resembles the C or Pas
al if-then(-else) operator.In PLAWright, there is a restri
tion as to what these <
ondition>s may 
ontain.As it is now implemented, the 
ondition must be related to the properties mentioned above(stru
ture and size).3.2.2 A Domain-Spe
i�
 Language for Linear AlgebraThe language presented in this 
hapter is intended to mirror the algorithms produ
ed whenemploying the FLAME methodology and to allow one to realize, in 
ode, the abstra
tionsdis
ussed in Se
tion 3.2.1. Largely, it does so su

essfully, but the disparities betweenFLAME and PLAWright deserve a bit of exposition. Similarly, as the previous 
haptermaintained that the FLAMBE 
oding style enabled 
ode and algorithm to be virtuallyindistinguishable, the 
laims made there must be re
onsidered.FLAME vs. PLAWrightIn an attempt to allow the novi
e to 
reate programs with eÆ
ien
ies that are 
lose to thoseprodu
ed by an expert, the �rst step is to allow the novi
e to program in an environment thatonly requires knowledge of standard linear algebra symbols and a few easily-rememberednotational 
onventions.Figure 3.3 on page 52 illustrates the simple, \exe
utable" format of the Eager versionof the LU de
omposition.There are few di�eren
es between this s
ript and the 
orresponding algorithm pre-sented in the previous 
hapter. The similarity of the two is primarily the result of thefa
t that the abstra
tions were designed around this style of presentation. We would alsomaintain that this style of presentation is a \natural" one and, optimally, the 
ode should
onform 
losely to it. The di�eren
es between the two are primarily the result of the fa
tthat there are a number of impli
it assumptions that a human makes or \�gures out;" our
ompilation system makes no su
h assumptions.The most obvious di�eren
e is the ASCII-ized nature of the PLAWright language.This dissimilarity exists be
ause standard 
ompiler te
hnology does not easily lend itself60
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to programming in or interpreting PostS
ript, the standard form of output for te
hni
alpapers. Another notable di�eren
e stems from the need to add 
ertain properties (via anno-tations) to the 
o-referen
e status that needs to be maintained between L, U , and A. Whileit is 
lear that these names are all to initially refer (in some sense) to the same obje
t, it isnot ne
essarily the 
ase that this property is to be inherited by all named sub-obje
ts (re-
ursive) or that the property is never voided (permanent). Be
ause FLAMBE was writtento respe
t C and Fortran, this idea of expli
it 
o-referen
e appeared to be at odds with thephilosophy of the language. The reader may have noti
ed that an analogous disparity existsbetween FLAME and PLAWright, but was not mentioned in Se
tion 3.2.2. In FLAME the
o-referen
e remains impli
it; only in PLAWright does it seem to present itself as a naturalpart of the language.Another disparity involves the addition of \;" (semi
olons) to the end of ea
h 
om-mand in the PLAWright language. This was done for reasons of expedien
y; statementseparators tend to make things 
learer to translators without having a profound impa
t onthe readability of the s
ript. They may even make the s
ript somewhat easier to read inthe absen
e of the formatting imposed on Figure 3.3, as whitespa
e is unimportant to thePLAWright-
ompiler. This pra
ti
e also tends to allow for the generation of more informa-tive error messages, sin
e statement and line numbers have unambiguous meaning in this
ase. Finally, the reader may have noted the transposition of = and <- between the algo-rithms and the s
ripts. This was done intentionally in order to point out that su
h things areoften a matter of taste and the 
ompilation system 
an be altered to suit su
h di�eren
eswith simple symbol (token) renaming. Here, we have taken ease-of-programming a stepfurther and extended the goal to ease of language extension. Sin
e the implementation ofthe language relies upon ANTLR 
ompiler te
hnology, allowing su
h 
ustomization seemedne
essary and proved to be simple to perform.PLAWright vs. FLAMBEThe PLAWright implementation of Eager LU fa
torization is depi
ted in Figure 3.3. ThisFigure bears a strong resemblan
e to Figure 2.3(a). By way of 
ontrast, let us 
onsiderthe expression of the eager LU algorithm as expressed using the FLAMBE system as isseen in Figure 3.7. Great pains have been taken to make the FLAMBE language resembleFLAME's language of algorithmi
 expression. However, the 
on�nes of the C programminglanguage ne
essitated some of the lexi
al distan
e between the two expressive forms. Byadding the appropriate 
omments, as is done in Figure 3.8, one 
an make the purpose ofthe 
ode more readily evident. However, the use the PLAWright domain-spe
i�
 languageobviates the need for su
h 
omments. The 
omments in the FLAMBE 
ode (Figure 3.8) arevirtually identi
al to the 
orresponding lines in the PLAWright s
ript (Figure 3.3).Be
ause performan
e is a 
onsideration, it should be pointed out that the use of su
ha s
ript language does not require one to sa
ri�
e their quest for stellar performan
e. In this
hapter, the manner in whi
h the user 
an spe
ialize the s
ripts so as to a
hieve superior61
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12 void PLA_LU_eager( PLA_Obj A, int nb );3 {4 < de
larations >5 PLA_Create_
onstants_
onf_to( A, &minus_one, NULL, &one );6 PLA_Obj_partition_4( A, &ATL, /**/ &ATR,7 /* ************** */8 &ABL, /**/ &ABR,9 /* with */ 0, /* by */ 0, /* submatrix */ PLA_SUBMATRIX_TL );10 while ( size = PLA_OBJ_GLOBAL_LENGTH( ABR ) ){11 b = min( size, nb );12 PLA_Obj_repartition_4_to_9( ATL, /**/ ATR, &A00, /**/ &A01, &A02,13 /* ************ */ /* ****************** */14 /**/ &A10, /**/ &A11, &A12,15 ABL, /**/ ABR, &A20, /**/ &A21, &A22,16 /* with */ b, /* by */ b, /* A11 split from submatrix */ PLA_SUBMATRIX_BR );17 PLA_LU_level2( A11 );18 PLA_Trsm( PLA_SIDE_LEFT, PLA_LOWER_TRIANGULAR,19 PLA_NO_TRANSPOSE, PLA_UNIT_DIAG,20 one, A11, A12 );21 PLA_Trsm( PLA_SIDE_RIGHT, PLA_UPPER_TRIANGULAR,22 PLA_NO_TRANSPOSE, PLA_NONUNIT_DIAG,23 one, A11, A21 );24 PLA_Gemm( PLA_NO_TRANSPOSE, PLA_NO_TRANSPOSE,25 minus_one, A21, A12, one, A22 );26 PLA_Obj_
ontinue_with_9_to_4( &ATL, /**/ &ATR, A00, A01, /**/ A02,27 /**/ A10, A11, /**/ A12,28 /* ************** */ /* ****************** */29 &ABL, /**/ &ABR, A20, A21, /**/ A22,30 /* with A11 added to submatrix */ PLA_SUBMATRIX_TL );31 }32 < 
leanup >33 }Figure 3.7: FLAMBE (parallel C version) 
ode for the Eager version of LU fa
torization
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12 void PLA_LU_eager( PLA_Obj A, int nb );3 {4 < de
larations >5 PLA_Create_
onstants_
onf_to( A, &minus_one, NULL, &one );6 PLA_Obj_partition_4( A, &ATL, /**/ &ATR,7 /* ************** */8 &ABL, /**/ &ABR,9 /* with */ 0, /* by */ 0, /* submatrix */ PLA_SUBMATRIX_TL );10 while ( size = PLA_OBJ_GLOBAL_LENGTH( ABR ) ){11 b = min( size, nb ); /* Determine blo
k size b */12 PLA_Obj_repartition_4_to_9( ATL, /**/ ATR, &A00, /**/ &A01, &A02,13 /* ************ */ /* ****************** */14 /**/ &A10, /**/ &A11, &A12,15 ABL, /**/ ABR, &A20, /**/ &A21, &A22,16 /* with */ b, /* by */ b, /* A11 split from submatrix */ PLA_SUBMATRIX_BR );17 PLA_LU_level2( A11 ); /* A11 <- L\U11 = LU fa
t( A11 ) */18 PLA_Trsm( PLA_SIDE_LEFT, PLA_LOWER_TRIANGULAR, /* A12 <- U12 = inv(L11) * A12 */19 PLA_NO_TRANSPOSE, PLA_UNIT_DIAG,20 one, A11, A12 );21 PLA_Trsm( PLA_SIDE_RIGHT, PLA_UPPER_TRIANGULAR, /* A21 <- L21 = A21 * inv(U11) */22 PLA_NO_TRANSPOSE, PLA_NONUNIT_DIAG,23 one, A11, A21 );24 PLA_Gemm( PLA_NO_TRANSPOSE, PLA_NO_TRANSPOSE, /* A22 <- A22 - A21 * A12 */25 minus_one, A21, A12, one, A22 );26 PLA_Obj_
ontinue_with_9_to_4( &ATL, /**/ &ATR, A00, A01, /**/ A02,27 /**/ A10, A11, /**/ A12,28 /* ************** */ /* ****************** */29 &ABL, /**/ &ABR, A20, A21, /**/ A22,30 /* with A11 added to submatrix */ PLA_SUBMATRIX_TL );31 }32 < 
leanup >33 }Figure 3.8: Commented FLAMBE (parallel C version) 
ode for the Eager version of LUfa
torization
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performan
e is addressed, while the dis
ussion regarding the e�e
ts of these spe
ializationswill be largely delayed until Chapter 5.3.2.3 Parallel Spe
ializations and ExtensionsThus far, details regarding 
omputational environments have been largely glossed over.The di�erent approa
hes were des
ribed in a manner that avoided any real 
onsiderationof a 
omputational environment even if the text o

asionally used the term \sequential"to supply a basis for 
ommuni
ation. While this is appropriate if one wishes to treat thepresented derivation methods as useful edu
ational tools, it falls short if one wishes to bringthese ideas to fruition in the real world.To realize the presented algorithms and to implement the primitives dis
ussedthus far is a straightforward task if the developer is restri
ted to the monolithi
 memorymodel [60℄. However, to extend the algorithms so that they are eÆ
ient in a distributed-memory system requires more work.This subse
tion presents a number of issues that only arise in the parallel ar
hite
-tural arena and show that few 
hanges are required to extend the algorithms and abstra
tionsalready presented so as to 
omply with the restri
tions and requirements imposed by thismodel.Why Spe
ialization Is ImportantWhen one shifts one's fo
us from the abstra
t environment of algorithmi
 derivation to thatof implementation, a number of issues arise. In the arena of linear algebra algorithms, these
on
erns 
an largely be pared down to one: memory hierar
hy 
onsiderations. For exam-ple, in the parallel ar
hite
ture 
ase there are two basi
 programming paradigms (models):shared-memory and distributed-memory. In this do
ument the fo
us is on an approa
hthat was designed with distributed-memory ma
hines in mind, but with the ability to treatthe underlying ar
hite
ture as if it were based on the shared-memory model. The reasonfor this approa
h is simple; it is desirable to a

ommodate both models and, sin
e theshared-memory model o�ers mu
h less 
ontrol than the distributed model, using a stri
tlyshared-memory model would prove sub-optimal from a performan
e point-of-view [75℄.The primary advantage of the shared-memory model is programming ease. Most ofthe examples in this dissertation, and all those presented thus far, 
ould remain un
hangedif they were to be implemented on a shared-memory ma
hine. The reason for this is simple;shared-memory models treat a 
omputational system, whether it has non-uniform memoryar
hite
ture (NUMA) 
hara
teristi
s or not, as if it were a \UMA" ar
hite
ture. Unfortu-nately, ignoring the NUMA nature of a system 
an result in sub-optimal performan
e. Bylayering the abstra
tions and the library derived from those abstra
tions so as to ease tran-sition from a shared view to a distributed view, the user is allowed to trade 
onvenien
e forperforman
e in a 
exible manner. In Chapter 5 we demonstrate how this design philosophyalso allows for the implementation of a (simple) performan
e analyzer that 
an dynami
allyanalyze the trade-o�s as the user transitions between approa
hes.64
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Writing Parallel AlgorithmsThere are two ways to view the 
onstru
tion of parallel algorithms in this setting. Forsimpli
ity, let us 
all them \hands-o�" and \hands-on." Both philosophies have potentialadvantages : : : and disadvantages.The hands-o� approa
h is to rely upon the underlying 
omputational environmentto deal with issues related to parallelism. This, of 
ourse, requires that the underlying
ode translation and instantiation me
hanism be 
apable of treating the 
omputationalenvironment as a shared-memory system. Figure 3.9 shows how the 
ode for the parallelversion of Eager LU de
omposition might appear in su
h a s
ript.1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is implied2122 A11 = (L11\U11) <- lu_fa
t(A11) ;23 A12 = U12 <- L11^-1 * A12 ;24 A21 = L21 <- A21 * U11^-1 ;25 A22 <- A22 - L21 * U12 ;26 partition27 / ATL # ATR \28 |###########|29 \ ABL # ABR / <= / A00 | A01 # A02 \30 |------------------|31 | A10 | A11 # A12 |32 |##################|33 \ A20 | A21 # A22 / ;34 enddo;35 L =!= A;36 U =!= A;Figure 3.9: S
ript for Eager version of parallel LU fa
torization (hands-o�)Noti
e that there are two very di�erent 
ontexts in whi
h this s
ript may be used. The �rst is a trueshared-memory environment in whi
h the underlying hardware provides the support that would allow for asimple line-by-line translation of this 
ode to fun
tion as it should. The other 
ase involves mapping onto65
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a ma
hine whose memory is distributed. While the �rst 
ase is rather uninteresting from the perspe
tiveof the work to be presented here, 
onsideration of the se
ond 
ase brings up a number of issues that meritfurther examination.Here again, we have something of a strategy bifur
ation. The user may either handle the issues thatarise \by hand" or they 
an suppose that an underlying library, 
oupled with the s
ript translator, providesthe required support. The former option requires a less sophisti
ated library, a simpler s
ript translator,and seems to hold out the promise of more 
omplete 
ode modularity while the latter would seem to providea framework for simpler 
oding. There are a number of issues to be dealt with if the automated 
odegeneration system is to work on a distributed ma
hine. In the following se
tions, we dis
uss some of theseissues and, in the end, 
onstru
t an LU de
omposition algorithm that, while expli
itly dealing with theissues involved, does not take on the kind of apparent additional 
omplexity that is traditionally asso
iatedwith 
onverting an algorithm to a distributed-memory model.Impa
t On Abstra
tionLet us assume that the SUMMA [73℄ approa
h to the implementation of the 
omputational 
omponentsof these algorithms is the one employed. This approa
h involves the appli
ation of a series of parallel,blo
ked operations. Using SUMMA, a parallel matrix-multipli
ation 
onsists of a series of panel-panel(outer-produ
t), matrix-panel (a matrix multiplied by many ve
tors), or panel-matrix multipli
ations. Theuse of SUMMA implies that two other abstra
tions are required if one does not wish to adopt the \hands-o�"stan
e dis
ussed in the previous se
tion. We refer to these abstra
tions as dupli
ation and 
onsolidation.It may appear diÆ
ult to determine whether these operations are more properly referred to asmanipulations or 
omputations. However, as we de�ned 
omputations to en
ompass any operation thatinvolves more than one data obje
t, by de�nition both abstra
tions fall into that 
ategory. Dupli
ationinvolves dupli
ating part of a data obje
t. That is, 
opying the data from one obje
t into the data 
omponentof some other obje
t(s). Consolidation (often referred to as \redu
tion") is the 
onverse of this relationship.It involves applying a fun
tion (in Fig. 3.9, addition) to some set of obje
ts that may be distributed a
rossthe grid and 
opying the result into another obje
t.Revisions For Performan
eWhile generating eÆ
ient, parallel 
ode from a s
ript is useful, it may be that the 
ode generation systemuser feels too far removed from the implementation. Sometimes this distan
e is desired, as in the 
ase of auser who has neither the desire nor the expertise to avail himself of the \deeper" aspe
ts of the programmingenvironment; but often, it is not.A 
ommon mistake that this 
ode generation system avoids is the permanent hiding of parallelismand other details. By allowing the user to address the underlying ar
hite
tural system at di�erent levels ofgranularity, superb performan
e and simpli
ity 
an be a
hieved with a reasonably 
onsistent programming\look and feel." This approa
h would seem to be the natural extension of the belief that 
omputationalabilities (su
h as parallelism) should not be hidden even though we may wish to 
on
eal how they operate [8,75℄. To illustrate the manner in whi
h su
h revisions might appear in a s
ript language, we presentFigure 3.10. A few remarks about some of the notation used in this \hands on" s
ript are probably 
alledfor. The use of the \Lo
al" fun
tional notation is intended to impose the requirement that the en
losedoperation does not involve any interpro
essor 
ommuni
ation. The other two, somewhat 
rypti
, notations|* and -* indi
ate \all pro
essor 
olumns" and \all pro
essor rows," respe
tively.As 
an be seen in Chapter 5, there are many things that 
an be determined and usedto advantage if the input is more spe
i�
 than a mathemati
al des
ription of the problem athand. In the 
ase where su
h additional information is withheld from the analysis engine,
ertain defaults are assumed. However, there is no guarantee that the default values are agood approximation to those of the problem under 
onsideration. It would be very diÆ
ult to66
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1 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)2 U === A ; // {Re
ursive} {Permanent}3 L has_property unit_lower_triangular ; // (* Permanent Property *)4 U has_property upper_triangular ;5 A has_property square ; // (* A
tually, Square here *)6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is really implied2122 fun
tion_override("PLALu1");23 A11 = (L11\U11) <- lu_fa
t(A11) ;24 Lower[L11tri℄ |* <- Lower[L11℄ ;25 A12 = U12 .<- Lower[L11tri℄^-1 * A12 ;26 U11tri -* <- Upper[U11℄ ;27 A21 = L21 .<- A21 * Upper[U11tri℄^-1 ;28 L21
ol |* <- L21 ;29 U12row -* <- U12 ;30 A22 .<- A22 - L21
ol * U12row ;31 partition32 / ATL # ATR \33 |###########|34 \ ABL # ABR / <= / A00 | A01 # A02 \35 |------------------|36 | A10 | A11 # A12 |37 |##################|38 \ A20 | A21 # A22 / ;39 enddo; Figure 3.10: S
ript for Eager version of parallel LU fa
torization
67
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provide su
h assuran
es, as the same implementation must work with di�erent mathemati
alobje
ts and on di�erent 
omputational grids.The information that 
an be 
ommuni
ated via the PLAWright annotations in
ludes:� The absolute or relative obje
t sizes� Known 
onstraints or preferen
es (maximum memory 
onsumed)� Target ar
hite
ture or hardware system spe
i�
s (per pro
essor or for entire ma
hine)� Minimum/Maximum/Spe
i�
 grid size and topology to be used� That the data will be distributed in some parti
ular manner� The form of results that are expe
ted from stati
 analysis (see Chapter 5 for options).3.3 Related WorkSin
e the work in this 
hapter 
onsiders abstra
tion in the light of both library 
onstru
tionand programming environment, work related to ea
h topi
 is dis
ussed.3.3.1 Library-Based Abstra
tionsThe �rst issue that should be dealt with is the use of the term environment as it appliesto a library. We posit that a library quali�es as an environment, or \framework" if thereader prefers, be
ause it impli
itly imposes a set of 
on
epts on the user. These 
on
eptsare expe
ted to be appropriate for the problem at hand and 
apable as a
ting as guides forthe user.Libraries are a means to \export" the expertise of some set of people so that it isavailable to a se
ond set of individuals. Often it is the 
ase that this se
ond set la
ks some,or all, of the area-spe
i�
 expertise of the �rst group. Most usually the library is 
onsideredto be at a \lower-level" than the appli
ations whi
h use it. However, this is not always the
ase. Consider the fa
t that a library 
an be distributed in at least two forms [57, 54℄. The�rst is the more traditional: 
omputer-language (sour
e or ma
hine) 
ode. The se
ond is inthe form of an algorithmi
 des
ription of the pro
ess of 
on
ern. This latter form providesan unrealized (potentially high-level) fun
tionality set that imposes fewer restri
tions, butsupplies the same framework as a 
oded library.Two well-known examples of traditional linear algebra libraries are LINPACK [22℄and LAPACK [5℄. Both libraries are built around an index-based s
heme 
ombined with aset of general 
omputational kernels. LINPACK, predating LAPACK, utilizes a subset of thekernels exploited by LAPACK. Whereas LINPACK uses only Level-1 BLAS (ve
tor-ve
tor)operations, LAPACK uses all three levels of the BLAS.While a paper or template [10℄ library does not provide an appli
ation program-ming interfa
e (API), it does provide, in many 
ases, a \plan of atta
k" for implementing68
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a software system and a foundation for 
reating an API (modulo programming language
onstraints).3.3.2 Programming EnvironmentsTwo well-known examples of modern programming environments are the Mathemati
a [77,35℄ and MATLAB [58℄ programming pa
kages. Both supply the user with a vast array offun
tions for 
omputation and visualization as well as a rudimentary integrated debuggingsystem. Additionally, both provide a huge assortment of library routines and their ownprogramming language with whi
h to 
all them. Further, both supply interfa
e routinesand do
umented spe
i�
ations so that the user is allowed to link in routines written inother more traditional languages, su
h as C or Fortran.Although Mathemati
a and MATLAB are examples of environments, they are, inmany ways, atypi
al of su
h pa
kages, though probably typi
al of the dire
tion in whi
hthese produ
ts are moving. While motivations of a 
ommer
ial nature may keep the sour
e
ode of these newer systems under wraps for the near future, these produ
ts allow the userto plug-in their own modules. 1Older software systems tended to be monolithi
 and, as they did not produ
e 
ode,plugging in user-de�ned modules was diÆ
ult. Newer pa
kages take a two-tiered approa
h:those users who wish to 
ontinue to view fun
tions as bla
k-boxes are free to do so, whilethose who want to look inside are given the ability to do so.3.4 Chapter SummaryIn this 
hapter, we have presented a language that allows the algorithm designer to spe-
ialize their operations. Spe
i�
ally, we have seen that the user is free to manipulate thedistribution of data a
ross the 
omputational grid as he sees �t. Su
h freedom is desirablefrom a performan
e-based point-of-view, but it is ne
essary from a 
exibility standpoint. Ifthis multi-layered approa
h is abandoned, the la
k of a parti
ular library module may implythat the algorithm designer is engaging in a futile e�ort. Just as in the sequential 
ase, it isvital that the user have the tools needed to 
onstru
t novel algorithms.In Chapter 4 we demonstrate that di�erent s
ript variants result in the produ
tionof di�erent 
ode instan
es, as one would expe
t. In that same 
hapter, we des
ribe how thiso

urs and why it is often bene�
ial. While Chapter 4 also 
ontains a dis
ussion related tos
ript versions and the di�eren
es in the 
ode 
orresponding to those versions, mu
h of thedis
ussion regarding the importan
e of this feature is delayed until issues of performan
eare 
onsidered in Chapter 5.
1MATLAB supplies, at an added 
ost, the ability to 
ompile their 
ode into a more eÆ
ient exe
utable.69
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Chapter 4Automated Code GenerationImplementation tweaking is a standard part of the pro
ess when one is developing high-performan
e s
ienti�
 appli
ations intended to run on parallel ar
hite
tures. In this areaof resear
h, algorithmi
 restru
turing and 
ode-level optimizations have traditionally beendone by di�erent groups [32℄. Unfortunately, information that 
ould be employed to make
ode more eÆ
ient is traditionally obs
ured in the translation from a high-level des
riptioninto low-level 
ode. Allowing the user to 
ode in a domain-spe
i�
 language su
h that high-level information is retained while automati
ally 
oupling the requirements to low-levelroutines would allow for both high- and low-level optimizations. The work presented in this
hapter allows one to perform pre
isely this a
tivity. That is, to generate 
ode instan
eswith high-performan
e 
hara
teristi
s while programming at a very high level.For an overview of the automated segment of the pro
ess des
ribed in this disserta-tion, the reader is instru
ted to refer to the illustration in Figure 3.1. There, the high-levelprogram (expressed in PLAWright) is translated into a series of PLAPACK library 
alls.The transformation pro
ess depends on the spe
i�
s of both the target library andthe 
omputational environment. Thus, the library routines in the target library are anno-tated with the following in order to 
reate the 
orresponding annotated library:� Their semanti
s, whi
h indi
ate what linear algebra operation is performed (i.e. servi
eprovided).� Guards, whi
h indi
ate the 
onditions under whi
h the library 
all is well-de�ned.� Performan
e 
hara
teristi
s, whi
h are used to generate automated analysis.The PLANALYZER uses the semanti
s and guards of the library routines in orderto generate a number of implementations whose fun
tionality 
orresponds to the input s
riptversion. This pro
ess is the fo
us of this 
hapter as is indi
ated in Figure 4.1. While this
hapter largely ignores performan
e 
onsiderations, the next 
hapter fo
uses on the issueof performan
e 
hara
teristi
s, so the reader with su
h 
on
erns need not worry that theyhave been entirely overlooked. 70
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Figure 4.1: Where the 
ode generator �ts into the \grand s
heme" of things.4.1 Motivation for Automating Library LinkageThere are many reasons that one might wish to automate library linkage. In Chapter 3,the PLAWright s
ript language was presented. In that 
hapter, the fo
us was on the fa
tthat the language provided for the eÆ
ient utilization of the expertise of the programmer.It was also pointed out that the s
ripts 
ould be 
ompiled and the resulting 
odes were
omputationally eÆ
ient. By automating library linkage, one 
an write a single exemplar
ode (s
ript) that 
ompiles into many di�erent 
ode realizations.This pra
ti
e also fa
ilitates the leveraging of the expert's knowledge via a separationof 
on
erns. The appli
ation writer 
an 
on
entrate on the pi
ture as he sees it and relyon the fa
t that the library writer provides eÆ
ient routines and that those routines arelinked to at the time of 
ompilation. The library writer might have a similar relationshipwith the kernel writer. All of these users 
ould be \
ommuni
ating" their work throughthe annotations they add to their 
ontributed routines and allowing the 
ompilation systemto �nd a mat
h between what they require (as is expressed in the s
ript) and what thelibrary provides (as is 
ommuni
ated in the asso
iated annotation). Thus, the automatedsystem represents an potential extension to what is often-sought in this relationship amongprogrammers. In the next 
hapter, we dis
uss how high performan
e is a
hieved. Here, weassume that eÆ
ient routines are linked to the user's requests.Portability 
an be as important as performan
e in the domain of dense linear algebra71
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libraries. Not only do 
ompanies 
ome and go, but vastly di�erent ar
hite
tural designs maybe 
reated and tested. Sometimes this testing o

urs in the marketpla
e and sometimes ittranspires in resear
h fa
ilities, but the shakeout that determines what lasts and what doesnot, will 
ontinue to happen as long as resour
es are �nite. The 
ore diÆ
ulty here is how todesign a 
ode generation system or systematize an approa
h su
h that the result is amenableto both evolutionary (e.g. Cray T3D ! Cray T3E) and revolutionary (e.g. Intel Paragon! LEGION ! Blue Gene) 
hanges.It would seem that adapting to 
hanges that are, as measured by performan
e met-ri
s, orders of magnitude apart would best be supported by two distin
t approa
hes [3℄,one emphasizing ease-of-use, and the other 
on
entrating solely on a
hieved performan
e.However, it is our thesis that one should moderate, at times, the (laudable) goal of \a sepa-ration of 
on
erns." One must determine when 
on
erns are identi
al or largely overlapping(i.e., to de
ide if and when these 
on
erns are the same when viewed from a given level ofabstra
tion).The s
ripts 
orresponding to the Eager and Lazy versions of LU fa
torization (de-pi
ted in Figures 4.2 and 4.3, respe
tively) are in a form that might be termed user-friendly.However, the user may wish to give dire
tives to the 
ode generation system. These di-re
tives might involve obje
t distribution, blo
k sizes, or spe
ifying the name of a spe
i�
library routine. In this 
hapter we address the impa
t of these \hints" on 
ode produ
-tion. For example, if one were to spe
ialize Figure 4.2 by providing su
h hints, the resultmight well be Figure 4.4 (seen previously in Figure 3.10). Note that lines 22 and 24-30in Figure 4.4 are all user-supplied hints related to fun
tion sele
tion (24) or distributionspe
i�
ation (24-30).4.2 Issues in Library LinkageThe issues that one must 
onsider when designing, in the abstra
t, an automated library-linkage system are mirrored when one's fo
us shifts to an implementation. This se
tionrestri
ts itself to issues that apply to the abstra
t 
ase while the next se
tion deals withea
h issue in the 
ontext of a proof-of-
on
ept implementation. The manner in whi
h thepro
ess of linking takes pla
e is delayed until Se
tion 4.3 be
ause 
ommuni
ation regardingthat subje
t bene�ts from the existen
e of 
on
rete examples.4.2.1 A (Fi
titious) Linking LibraryThere are many ways in whi
h any s
ienti�
 software library 
an be 
onstru
ted. Werestri
t our attention to theoreti
al 
onstru
ts that lie at opposite ends of the spe
trum ofpossibilities and 
onsider issues germane to the use of a s
ript language su
h as PLAWright.First, there is the possibility that the library 
ontains a great many subroutines.So many, in fa
t, that there is always at least one subroutine that mat
hes the featurerequirements of any operation requested (see Se
tion 4.2.2) by a s
ript statement. At theother end of the s
ale, there is the possibility that the library 
onsists of few routines, but72
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1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is implied2122 A11 = (L11\U11) <- lu_fa
t(A11) ;23 A12 = U12 <- L11^-1 * A12 ;24 A21 = L21 <- A21 * U11^-1 ;25 A22 <- A22 - L21 * U12 ;26 partition27 / ATL # ATR \28 |###########|29 \ ABL # ABR / <= / A00 | A01 # A02 \30 |------------------|31 | A10 | A11 # A12 |32 |##################|33 \ A20 | A21 # A22 / ;34 enddo;35 L =!= A;36 U =!= A;Figure 4.2: Computer-readable S
ript for Eager version of LU fa
torization
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1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ; // (* Same as non-unit *)3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is implied21 A01 = U01 <- L00^-1 * A01 ;22 A10 = L10 <- A10 * U00^-1 ;23 A11 = (L11\U11) <- A11 - L10 * U01 ;24 A11 = (L11\U11) <- lu_fa
t(A11) ;25 partition26 / ATL # ATR \27 |###########|28 \ ABL # ABR / <= / A00 | A01 # A02 \29 |------------------|30 | A10 | A11 # A12 |31 |##################|32 \ A20 | A21 # A22 / ;33 enddo;34 L =!= A;35 U =!= A;Figure 4.3: Computer-readable s
ript for Lazy version of LU fa
torization
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1 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)2 U === A ; // {Re
ursive} {Permanent}3 L has_property unit_lower_triangular ; // (* Permanent Property *)4 U has_property upper_triangular ;5 A has_property square ; // (* A
tually, Square here *)6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is really implied2122 fun
tion_override("PLALu1");23 A11 = (L11\U11) <- lu_fa
t(A11) ;24 Lower[L11tri℄ |* <- Lower[L11℄ ;25 A12 = U12 .<- Lower[L11tri℄^-1 * A12 ;26 U11tri -* <- Upper[U11℄ ;27 A21 = L21 .<- A21 * Upper[U11tri℄^-1 ;28 L21
ol |* <- L21 ;29 U12row -* <- U12 ;30 A22 .<- A22 - L21
ol * U12row ;31 partition32 / ATL # ATR \33 |###########|34 \ ABL # ABR / <= / A00 | A01 # A02 \35 |------------------|36 | A10 | A11 # A12 |37 |##################|38 \ A20 | A21 # A22 / ;39 enddo;Figure 4.4: Annotated s
ript for an Eager version of parallel LU fa
torization
75



www.manaraa.com

routines from whi
h one 
ould 
onstru
t an algorithm mat
hing the semanti
 requirementsof any legal s
ript statement.Either of these libraries 
an be used in an automated 
ode generation system. Deter-mining whi
h one is \best" would seem to be a philosophi
al, not s
ienti�
, issue. Certainly,in the large library 
ase, mat
hing the requirements of the s
ript to the fun
tionality pro-vided by the library is simpler. The mat
hing 
an be both 1:1 on a line-by-line basis andpurely synta
ti
 in the �rst 
ase. Further, if the underlying library is optimized, the opera-tions 
orresponding to these mat
hes is almost always the best 
hoi
es from a performan
eperspe
tive. In the small library 
ase, the mat
hing pro
edure is more 
omplex, as it hasthe responsibility of building programs from 
omponents.For the purposes of this dissertation, we fo
us on a library that lies somewhere inthe middle. This is justi�ed for the following reasons. First, if the large, eÆ
ient library is
onsidered the target, the work involved in the binding pro
ess is not very interesting. Inthat 
ase, mat
hing is simple and, while automated performan
e analysis (see Chapter 5)might be interesting, it is not ne
essary, as the highest degree of available eÆ
ien
y isvirtually assured simply by dint of the \brains" in (or behind) the library. Se
ond, the
ase of the building-blo
k library has an unfortunate stopping point, namely the 
onstru
tsin the language of output. Sin
e the idea of generating optimized assembly language froma high-level s
ript language would appear to be too ambitious for any single dissertation,a middle ground was sele
ted. In any 
ase, expertise is required. For the large library, agreat deal of expertise would be needed to 
onstru
t the annotations, while in the building-blo
k library 
ase, the greater expertise would be required to transform the input to a listof library-mat
hable requirements. Finally, the PLAPACK library was targeted be
ause itis an implementation of the layered approa
h advo
ated in this do
ument and has goodperforman
e 
hara
teristi
s.4.2.2 Redu
ing a S
riptThe algorithm expressed in s
ript form is to be realized through the fun
tionality of a library,thus the requirements of the s
ript must be mated to that library. One 
ould mat
h therequirements dire
tly, if they were to assume the \large" version of the library des
ribed inSe
tion 4.2.1. However, that se
tion 
lari�es why the use of su
h a library is not employedin this work. Thus, we assume that some form of redu
tion to requirements must take pla
e.The question then be
omes one of determining the language into whi
h these require-ments are translated. This determination has been largely di
tated to us by the abstra
tionsbehind the language itself. In Se
tion 3.2.1, details about the ne
essary abstra
tions under-lying the PLAWright language were given. It would seem 
ertain that the language formwe employ to express the s
ript requirements must have the ability to express those ab-stra
tions. Certainly, though it is not stri
tly ne
essary, it 
an also prove bene�
ial if this\down-translation" (from s
ript to requirements) is 
apable of produ
ing s
ript-indu
ed-requirements that express higher-level needs. It is often advantageous to stay as 
lose aspossible to the appli
ation (and the appli
ation language) so as not to lose information.Therefore, we deem it bene�
ial for any su
h 
ode generator to have the ability to translate76
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down to various levels of feature abstra
tions so that it 
an mat
h the library at the highestlevel possible. Alternatively, translation 
ould o

ur in a step-wise fashion, where libraryfun
tionalities are mat
hed at the highest level available and further re�nement (down-translation) performed on a need-driven basis. As 
an be seen in the implementationalarena (Se
tion 4.3.3), the former approa
h was sele
ted stri
tly for reasons of expedien
y.4.2.3 Annotating a LibraryIt might appear that the questions regarding the form of the language used to annotate thelibrary have already been answered. Se
tion 4.2.2 supplied details about how the abstra
tdown-translation is to o

ur, and it seems logi
al to assume that the library annotationsare to mat
h that language if a binding is to o

ur. Unsurprisingly, here, we do make thatassumption. Surprisingly, this is not the end of the subse
tion.It would seem that we are still left with some 
hoi
es about the language we wishto use in order to annotate our �
titious library. We 
ould:1. Use the target language of the s
ript requirements (lowest level).2. Employ PLAWright to annotate the library and the s
ript translation engine to \di-gest" those annotations.3. Exploit a 
ombination of the �rst two ideas.We utilize the third option. However, for purposes of exposition, a mid-level format is usedto illustrate the realization of these annotations.4.2.4 Produ
ing OutputThe kind of output produ
ed has largely been determined by the methodologi
al approa
h wehave assumed: the use of some existing library or libraries. Sin
e interoperability 
on
ernsare outside the s
ope of the resear
h 
ompleted, we have restri
ted ourselves to a single
omputer language. Further, be
ause the existing s
ienti�
 libraries are usually writtenin an imperative language, most often C or Fortran, we restri
t our attention to thoselanguages.4.3 Implementation: An Automated LibraryThe software system depends on mat
hing s
ript requirements to the library fun
tionality.Thus, it avoids having to handle many of the diÆ
ulties involved when one deals with novelar
hite
tures by relying on a library expert. This expert is expe
ted to provide the (PLAN-ALYZER) system with 
orre
t (fun
tionality and performan
e) annotations. Further, it isexpe
ted that the routines to be \mined" evin
e superb performan
e 
hara
teristi
s.Those dis
laimers aside, not all is lost. In the dis
ussion of Se
tion 4.2.1 regardingthe design of a �
titious library, it was pointed out that the 
ode generator 
an 
ompose77
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a fairly small number of primitive operations to implement an algorithm. This removes agood deal of the burden from the shoulders of the library expert as that individual 
an besupplied with a short list of annotated and optimized fun
tions whi
h must be provided.While it is still true that the expert may have to do some work for this to be a
hieved, theburden is de
idedly eased when 
ompared to traditional library building methods. In those
ases, supplying the kernel routines was the �rst of many steps; here, it marks the shift intoa far more automati
 method of development.4.3.1 Tools EmployedIn order to allow automated binding to an annotated library, a number of software toolswere used. The �rst step in the 
hain of exe
ution is the ANTLR [61, 62℄ 
ompiler-
ompiler.Given PLAWright 
ode, ANTLR was used to 
ompile the s
ripted input into a fun
tionalprogramming form that was synta
ti
ally well-formed Mathemati
a input 
ode. At thatpoint in the pro
ess, Mathemati
a [77℄ is utilized in order to perform the pattern-mat
hingne
essary to 
ombine the requirements of the program with the fun
tionality provided bythe (annotated) library, and to translate this intermediate form into an exe
utable largely
omposed of 
alls to the target library.4.3.2 PLAPACK: A Target LibraryWhen 
oupling a s
ript to a library, it is bene�
ial for the library to be 
onstru
ted ina

ordan
e with the same design philosophy re
e
ted in the s
ript language. PLAPACK iswell-suited to this goal, due to its layered stru
ture. Figure 4.5 illustrates the PLAPACKlibrary's layered nature and meshes ni
ely with this design goal.

Figure 4.5: The layered stru
ture of the PLAPACK libraryVery brie
y, the layering allows the naive user to program at a very high level, so asto intera
t stri
tly with high-level global routines and the shared-memory view a�orded bythe use of the (poorly named) \API" routines. The more expert user may exer
ise greater78
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ontrol of the pro
ess by utilizing the lower levels of the library. This allows the appli
ationprogrammer to 
reate a working proof-of-
on
ept algorithm, and then to iteratively re�neit in order to maximize performan
e [2℄. The work presented here further eases this pro
essby automating optimizations and allowing the user to program at an even higher level ofabstra
tion if he so 
hooses and to spend more of their energy on algorithmi
, rather thanprogramming, re�nement.4.3.3 Compiling PLAWrightThe 
ompilation of a PLAWright s
ript is most easily thought of in terms of rewrite rules,syntax-based tranformations. One form of the implementation uses a simple table of rewriterules in order to perform this translation. As that is an approa
h that lends itself toexposition, that implementation is the one that is studied in this se
tion.Consider line 25 in Figure 4.2.A22 <- A22 - L21 * U12 ;After the stage of 
ompilation handled by the ANTLR 
ompiler tool has been performed,the intermediate form of the program is in a format that 
an be parsed by Mathemati
a.The ANTLR tool also determines if the s
ript is synta
ti
ally 
orre
t, but the Mathemati
aengine is responsible for determining whether or not the s
ript 
an be transformed into anexe
utable program and, if so, how.When this line of 
ode enters Mathemati
a it has the following form:AssignTo[ A22, PLAMinus [ A22, PLATimes[ L21, U12 ℄℄℄whi
h is transformed, by default, into:AssignTo[ A22, PLAPlus [ A22, PLATimes[ -1, L21, U12℄℄℄The 
ode generator explores many paths of translation. Let us 
onsider one of theeventual targets of this translation:PLAGemm[transa , transb , alpha , A , B , beta , C ℄We 
an ignore the transx parameters, as the details might prove distra
ting. In orderto arrive at this format, the initial form must be transformed into one that mat
hes thePLAGemm[℄ 
all. The following line illustrates the format that must be mat
hed (the 
he
ksof obje
t types that are in
luded in the rewriter are omitted for brevity). The following lineis intended to 
apture the features of the PLA Gemm( ) library fun
tion, but the des
riptionis divor
ed from that parti
ular implementation.79
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AssignTo[C1 ,PLAPlus[PLATimes[alpha , A , B ℄,PLATimes[beta , C2 ℄℄℄A few topi
s need to be dealt with here. The �rst involves the fa
t that C1 andC2 both mat
h A22. This is allowable in uni�
ation as two variables 
an mat
h the sameobje
t. The se
ond requires only slightly more explanation. Barring expli
it user dire
tivesto the 
ontrary, the rewriting system 
an 
hange the order of the obje
ts involved in anaddition operation. Therefore,PLAPlus[ A22, PLATimes[ -1, L21, U12℄℄be
omes PLAPlus[ PLATimes[ -1, L21, U12℄, A22℄in one sear
h 
hain. The third and �nal issue involves the multipli
ation by s
alars. Theoperation to be mat
hed in
ludes alpha and beta terms that are not in the originaloperation. This 
an be handled in at least two ways. One solution is to default values to theoperations (in the 
ase that no s
alar is supplied). Alternatively, one 
ould build knowledgeinto the rewriter (e.g., that multipli
ation by 1 results in an obje
t with un
hanged values).The se
ond option was utilized in the engine for reasons of expedien
y, but this will likelybe 
hanged in the future, as dealing with su
h things using a demand-driven approa
h tendsto be more 
omputationally eÆ
ient.Given that the PLANALYZER eventually mat
hes:PLAGemm[transa , transb , alpha , A , B , beta , C ℄all that is left is the output of 
ode. This is a simple step involving a simple Expression[℄to String[℄ rewrite inside Mathemati
a resulting in the output:PLA Gemm(PLA NO TRANS, PLA NO TRANS, ms
alarnegone, L21, U12, ms
alarone, A22);4.3.4 Annotating the Library: Fun
tionality ProvidedTo apply any operation, the pre
onditions of that operation must be met in order for thesemanti
s of the operation to be well-de�ned. Therefore, tests are applied in order todetermine if the fun
tion is appli
able to the \
urrent state" of the program, as seen throughthe eyes of the 
ode-generation me
hanism. In order to advan
e the state of the program,the appli
able and required operations are applied to the 
urrent state.Pre-Conditions: GuardsConsider a simple example 
onsisting of the following one-line high-level program.80
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A  A � C;The PLANALYZER attempts to mat
h this with the PLAPACK library's fun
tionality andafter some analysis identi�es the following 
all as a possible mat
h.AssignTo[A, PLAPlus[PLATimes[ms
alarone, A, C℄,PLATimes [ms
alarzero, A℄℄℄where ms
alarone and ms
alarzero 
orrespond to 1 and 0, respe
tively.The above is an instan
e of the library 
allAssignTo[C , PLAPlus[PLATimes[a , A , B ℄, PLATimes[b , C ℄℄℄whose general fun
tionality isC  (a � A � B ) + (b � C )where a and b are uni�able variables that 
an be thought of as being of type s
alar and A ,B , and C are uni�able variables of type matrix (with 
onformal dimensions). The guardsspe
ify that neither A nor B 
an be the same as C , therefore,AssignTo[A, PLAPlus[PLATimes[ms
alarone, A, C℄,PLATimes [ms
alarzero, A℄℄℄is not a valid transformation. Thus, a new variable, used to hold a 
opy of A, is de
lared.This allows the use of a PLA Gemm( ) 
all while satisfying the guards.This 
reates the following 
hain of operations:PLA_Matrix_
reate_
onf_to(A, &MATRIXTEMPA123);}PLA_Copy(A, MATRIXTEMPA123);}PLA_Gemm(PLA_NOTRANS, PLA_NOTRANS, ms
alarone, A, B,ms
alarzero, MATRIXTEMPA123);PLA_Copy(MATRIXTEMPA123, A);For reasons detailed in Chapter 5, this 
ode will be reje
ted due to its inherentineÆ
ien
ies, but it is one of the paths that will be explored.Post-Conditions: Adds and DeletesTo advan
e the state of the 
omputation, the operations are applied to the 
urrent state. Forthe purposes of 
ode generation, appli
ation means being added to the program under 
on-stru
tion; in the 
ontext of state advan
ement, it means having the appropriate propertiesadded to and deleted from the property set that 
orresponds to program state.A simple example should 
larify this pro
edure. Re
onsider the aforementioned\
hain" of 
ode. 81
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1. PLA_Matrix_
reate_
onf_to(A, &MATRIXTEMPA123);}2. PLA_Copy(A, MATRIXTEMPA123);}3. PLA_Gemm(PLA_NOTRANS, PLA_NOTRANS, ms
alarone, A, B,ms
alarzero, MATRIXTEMPA123);4. PLA_Copy(MATRIXTEMPA123, A);At the outset (the non-existent line 0), matrix A had some state (size, shape,et
.) while MATRIXTEMPA123 had no su
h properties. After the exe
ution of lines 1 and2, MATRIXTEMPA123 has the same properties as A and 
ould be used as a substitute for A.However, after the \exe
ution" of line 3, MATRIXTEMPA123 has had some of those propertiesdeleted (e.g. that its data 
omponent is the same as A's), has had some left un
hanged (e.g.the size of the matrix), and has had some added (e.g. that its data 
omponent is the produ
t
orresponding the matrix-multipli
ation). After the exe
ution of line 4, the properties ofthe two obje
ts again 
oin
ide.4.3.5 Produ
ing OutputThe s
ript language must be translated into a 
ompilable language. The viable alternativewould be to have the translation system transform the input down to the level of assembly
ode, but that part of optimizing-
ompiler te
hnology is not part of this dissertation (aswas alluded to in Se
tion 4.2.1). Therefore, the target language is an issue that must be
onsidered in the realization of the 
ode generator.First, we must 
onsider whi
h programming language(s) we wish to target. Manyissues arise in su
h a de
ision. Sin
e FLAMBE has been written in both Fortran and C, wetarget a parallel version of FLAME, PFLAMBE. 1The translation of the algorithm into eÆ
ient 
ode has 
learly de�ned lines of demar-
ation. This design de
ision allows language independen
e for as long as is possible in the
ompilation pro
ess. The strati�
ation of the FLAME ! PLAWright ! PLANALYZERsystem is su
h that new programming languages might be targeted in the future.4.3.6 A Realized Constru
tionWhen the PLANALYZER was supplied with the s
ript depi
ted in Figure 4.2, it produ
edmany di�erent 
oding instantiations. One of these is depi
ted in Figure 4.6While the generated library routines shared many traits, they did evin
e some dif-feren
es. The most 
ommon of these was the 
reation of temporary obje
ts for the storageof matri
es that would a
t as temporary 
opies for the 
omputations performed. In the
ase of Eager LU fa
torization, this seems rather illogi
al, but, it is not universally so. Forexample, if the following 
omputations were to o

ur:1PFLAMBE is a sugar
oated extension of the PLAPACK language expressed in the FLAMBE manner.PFLAMBE was sele
ted to be the target language be
ause its format is not in 
ux. In addition the use ofPFLAMBE allows us to study more deeply nested memory hierar
hy issues in Chapter 5.82
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1 for(;;)2 {3 PLA_Obj_global_length( ABR, &PLAEnderLength);4 PLA_Obj_global_width( ABR, &PLAEnderWidth);5 if( PLAEnderLength == 0 && PLAEnderWidth == 0) break;6 PLA_Obj_split_size( ABR , PLATOP , &PLAlength2, &dummyint );7 PLA_Obj_split_size( ABR , PLALEFT , &PLAwidth2, &dummyint );8 nb = min (PLAlength2 , PLAwidth2 );9 PLA_Obj_view_all (ATL, &A00);10 PLA_Obj_vert_split_2( ATR, nb , &A01, &A02 );11 PLA_Obj_horz_split_2( ABL, nb , &A10,12 &A20 );13 PLA_Obj_split_4( ABR, nb, nb , &A11, &A12,14 &A21, &A22 );15 PLA_Lo
al_LU(A11);16 PLA_Trsm( PLA_SIDE_LEFT , PLA_LOWER_TRIANGULAR , PLA_NOTRANSPOSE ,17 PLA_UNIT_DIAG , ms
alarspe
ialone , A11 , A12 );18 PLA_Trsm( PLA_SIDE_RIGHT ,PLA_UPPER_TRIANGULAR , PLA_NO_TRANSPOSE ,19 PLA_NONUNIT_DIAG , ms
alarspe
ialone , A11 , A21 );20 PLA_Gemm( PLA_NO_TRANSPOSE , PLA_NO_TRANSPOSE ,21 ms
alarspe
ialnegone , A21 , A12 , ms
alarspe
ialone , A22 );22 PLA_Obj_join_4( A00, A01,23 A10, A11, &ATL );24 PLA_Obj_horz_join_2( A02,25 A12, &ATR );26 PLA_Obj_vert_join_2( A20, A21, &ABL );27 PLA_Obj_view_all( A22, &ABR );28 }29 Figure 4.6: Central loop of 
reated 
ode for the Eager variant of LU fa
torization
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A <- B * C;A <- E;D <- B * C * B * C;it might make sense to 
reate shadow storage for the B * C result. In any event, the same
ompiler te
hnology that is used to determine how to allo
ate registers most eÆ
iently 
anbe employed here for entire matri
es.Later, in Chapter 5, we revisit why su
h di�eren
es exist among the produ
ed 
odinginstan
es and what they lend the system as a whole.4.3.7 LibrariesWe fo
us on two libraries that have very similar fun
tionality for the purposes of the resear
hpresented here.S
aLAPACKThe S
aLAPACK library is a parallel extension of the LAPACK library designed for maximal
ode re-use. The goal of the S
aLAPACK proje
t is to implement all of the LAPACKroutines in an eÆ
ient manner on a variety of parallel ar
hite
tures. Through 
ode reuse(of the LAPACK library), the proje
t attempts to use existing optimized and tested serial
ode on ea
h pro
essor of a parallel ma
hine. This is done through an intermediate level
alled the PB-BLAS (Parallel Blo
ked BLAS) [14℄ in an attempt to supply users with alayered-library.Unfortunately, it is our opinion that S
aLAPACK to sa
ri�
es some design 
oher-en
e, or at least readability, in order to gain this 
ode-leverage. This is not surprising as the
hara
ter of the software is heavily in
uen
ed by the bottom-up nature of this approa
h.Higher-level parallel routines may 
all lower-level parallel (or serial) routines that do notshare the same design goals. This may result in unfortunate 
ommuni
ation penalties. Fur-ther, the parallel versions of serial subroutines tend to have many additional parameters,due to the in
reased indexing 
omplexity. This tends to make these routines somewhatdiÆ
ult to use and the underlying library somewhat diÆ
ult to maintain.In addition, S
aLAPACK ties itself to the BLACS 
ommuni
ations library. Whilethe 
oupling of two libraries may or may not be a problem, there appear to be some problemswith the BLACS in that there are simple global 
ommuni
ations patterns that it appearsto la
k.PLAPACKLike S
aLAPACK, PLAPACK [74℄ is a library that 
an be used for doing dense linear algebraon parallel 
omputers. PLAPACK di�ers from S
aLAPACK in that it is an obje
t-based
onstru
t that insulates the user from error-prone index 
omputations through the use of84
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\views." Views allow obje
ts to 
o-referen
e portions of the same data (e.g. parent obje
tsmay hold data that 
an be manipulated by any number of 
hildren).4.3.8 Library BindingA 
laim is sometimes made that no 
lass2 of user wishes to view the libraries that they utilizeas bla
k box routines. This stands in 
ontrast to the fa
t that the typi
al user of a pa
kagesu
h as MATLAB is assumed not to 
are about what is underneath. In truth, it is often the
ase that users do not wish to have to know what is going on underneath, but want the optionof as
ertaining and leveraging su
h knowledge. Proje
ts su
h as FALCON [20, 57, 19℄ havebeen very su

essful in automati
ally restru
turing MATLAB 
ode into languages su
h asSage++ and Fortran90. More re
ent e�orts su
h as Broadway [50℄ have made strides towardsallowing the user to produ
e high-performan
e 
ode while programming in a somewhat naivemanner. This is fa
ilitated by a sophisti
ated, optimizing 
ompilation system. This obviatesthe need for expertise to some degree, but allows for the leveraging of programmer-originatedoptimizations.It is important to note the synergisti
 role between library and 
ompiler in these
ases. FALCON utilizes little information about the relationships between routines in thelibraries that it uses. Conversely, Broadway exploits su
h information and bene�ts from thelayered 
onstru
tion of libraries PLAPACK.4.4 Experimental ResultsThe PLANALYZER is a proof-of-
on
ept implementation. In Se
tion 2.8, a number of em-piri
al tests were performed with FLAME as the methodology under study. In this se
tion,I demonstrate the eÆ
a
y of the PLANALYZER as regards 
ode generation by applying itto a number of algorithmi
 variants and versions. These algorithms exhibit di�ering levelsof 
omplexity and the resulting 
odes evin
e di�erent performan
e 
hara
teristi
s.In this dissertation, the 
on
epts underlying an automated system that 
ould be usedto generate 
omputer 
ode and analysis for linear algebra algorithms have been dis
ussed.Viewing the 
omponents in the 
ontext of the automated system as a whole yields an imageakin to the one seen in Figure 4.7.4.4.1 Generating Parallel LU Fa
torizationIn order to 
reate a hybridized algorithm, one must �rst generate a number of variants ofthe algorithm under 
onsideration. When using the PLANALYZER, the next step involvestranslating the algorithms into an input format a

eptable to the PLAWright 
ompiler. Itis at this time that these s
ripts are annotated with performan
e and analyti
al dire
tives ifthese spe
ializations are desired. Finally, the s
ripts are 
oupled with the annotated library2It may be the 
ase that some individual users do wish to do so.85
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Figure 4.7: The \grand s
heme" of things as has been dis
ussed.in order to generate 
ode and 
orresponding performan
e analysis. This se
tion 
overs thesesteps and analyzes the results.Generating the AlgorithmsUsing the FLAME methodology (see Chapter 2), �ve 
ommon variants of LU fa
torizationwere systemati
ally generated as is detailed in Se
tion 2.4. Be
ause the Eager varianttended to yield the best performan
e for large problems exe
uted on parallel ma
hines, itwas sele
ted for spe
ialization in the remainder of the experiments 
on
erning di�eren
esbetween algorithmi
 versions.Generating the S
riptsAs is dis
ussed in Chapter 3, the barrier between FLAME and the PLANALYZER is bridgedby 
onverting the algorithm into an ASCII representation. The di�eren
es between the wayin whi
h we might depi
t an algorithm in a te
hni
al report and this ASCII version wereexamined in Se
tion 3.2.1. Some of these s
ripts were spe
ialized for the parallel environmentthat was to be the target ar
hite
ture (PLAPACK v3.1 exe
uting on a Cray T3E). Themethods employed to perform this spe
ialization were des
ribed in Se
tion 3.1.3.86
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The S
ripts: DetailsLet us brie
y des
ribe the 
odes that were analyzed by the PLANALYZER system. First,there were the �ve algorithmi
 variants of LU fa
torization. A 
orresponding version, interms of 
omplexity, of ea
h variant was used for both the 
ode generation and analysistests. The 
ommon thread between these variants has to do with the sub-problem of LUfa
torization. In ea
h 
ase, the submatrix to be fa
tored was lo
alized (via expli
it s
riptdire
tives) so as to exist on one pro
essor. No further dire
tives were supplied. The variantstested were:1. Eager LU Fa
torization2. Lazy LU Fa
torization3. Row-Lazy LU Fa
torization4. Column-Lazy LU Fa
torization5. Row-Column-Lazy LU Fa
torizationIn order to further explore the 
apabilities of the analysis engine, the Eager variantwas spe
ialized through both annotation and dire
t manipulation of a form of the 
ode thatwould not be available to the 
asual user. The versions studied were:1. Eager1: The s
ript was spe
ialized to enfor
e a 1 by 1 blo
king. The intermediate
ode was hand-massages in order to avoid the 
all to the LU fa
torization of the 1 by1 blo
k (avoiding a fun
tion 
all that would result in a NO-OP).2. Eager2: The s
ript was spe
ialized to enfor
e a 1 by 1 blo
king as well as expli
itly
reating a dupli
ated-everywhere obje
t (a multis
alar) to hold the portion to befa
tored. Annotations were also added so that the would 
all lo
al PFLAMBE routinesfor the triangular solves. The intermediate 
ode was hand-massages in order to avoidthe 
all to the LU fa
torization of the 1 by 1 blo
k as well as the triangular solveinvolving a unit-diagonal 1 by 1 matrix.3. Eager3a: Annotations to the s
ript for
ed the LU-fa
torization subproblem (A11),to exist on a single pro
essor. This resulted in an LU subproblem of the distributionblo
king size. Further, fun
tion override was used to for
e the Eager1 algorithm(above) to be utilized for fa
toring the LU subproblem.Eager3b: Annotations to the s
ript for
ed the LU-fa
torization subproblem (A11),to exist on a single pro
essor. Further, fun
tion override was used to for
e the Eager2algorithm (above) to be utilized for fa
toring the LU subproblem.4. Eager4: Identi
al to Eager3a/3b ex
ept that fun
tional override was used to for
ea 
all to a handwritten lo
al LU kernel whose performan
e was assumed to be that ofa \standard" level-2 BLAS routine (about 10% of pro
essor peak) when solving theLU de
omposition subproblem. 87
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5. Eager5: The same as Eager4 save for the fa
t that the s
ript was annotated tofor
e a dupli
ation of the obje
t to be fa
tored (a 
opy into a dupli
ated-everywheremultis
alar). This allowed the appli
ation of lo
al triangular solves, so the s
ript wasannotated to enfor
e that optimization (via the use of .<-, instead of <-, assignmentdire
tives).6. Eager6a: Partitions the matrix to be fa
tored into sub-blo
ks that are of the algo-rithmi
 blo
king size (64) rather than the distribution blo
king size (16). Fun
tionaloverride was employed in order to 
all Eager4 for the LU subproblem. All otheroperations were global.Eager6b: Identi
al to Eager6a, save for the fa
t that the LU subproblem was han-dled by Eager5.Eager6
: Identi
al to Eager6a, save for the fa
t that the LU subproblem was handledby Eager1.Generating CodeThe s
ript variants were, in nature, similar to the one depi
ted in Figure 4.8. Ea
h of theexamined variants was given the same level of annotated dire
tion (see Se
tion 4.4.1) toprodu
e the versions examined.The 
odes produ
ed resembled the program in Figure 4.9. For purposes of pre-sentation, 
omment bars were pla
ed around the se
tion of 
ode that makes this a Lazyalgorithm, the name was 
hanged from the unique name generated by Mathemati
a to Lazyand the lines 
ontaining variable de
larations and obje
t \free"s were abbreviated.A number of 
ode instantiations were produ
ed from ea
h s
ripted variant input.The number of instantiations 
ould prove misleading so the reader should bear in mindthat the number is the produ
t of the number of instantiations available for ea
h line ofthe s
ript involving an operation and, more importantly, that most of the 
odes generatedwere suboptimal. The reason for this latter o

urren
e is detailed in Se
tion 4.3.6 and is aproperty of the prototype nature of the PLANALYZER system. The 
ode generation engineand the analysis engine were not employed in 
on
ert.The number of 
ode instantiations produ
ed:1. Eager LU Fa
torization: 842. Lazy LU Fa
torization: 843. Row-Lazy LU Fa
torization: 5884. Column-Lazy LU Fa
torization: 5885. Row-Column-Lazy LU Fa
torization: 5292While only random samples of the generated 
odes were examined, the more eÆ
ient
odes tended to 
orrespond to those that have been generated by hand.88
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1 L has_property unit_lower_triangular ;2 U has_property upper_triangular ;3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;910 do until ABR is 0 by 011 partition / ATL # ATR \12 |###########|13 \ ABL # ABR /14 => / A00 # A01 | A02 \15 |#################|16 | A10 # A11 | A12 |17 |-----#-----------|18 \ A20 # A21 | A22 /19 where A11 is lo
al and20 A11 is lo
ally square and21 A11 is nb by nb ; // No larger than this2223 A01 = U01 <- L00^-1 * A01 ;24 A10 = L10 <- A10 * U00^-1 ;25 A11 = (L11\U11) <- A11 - L10 * U01 ;26 A11 = (L11\U11) <- lu_fa
t(A11) ;2728 partition29 / ATL # ATR \30 |###########|31 \ ABL # ABR / <= / A00 | A01 # A02 \32 |------------------|33 | A10 | A11 # A12 |34 |##################|35 \ A20 | A21 # A22 / ;36 enddo;37 L =!= A;38 U =!= A;Figure 4.8: PLAWright-
ompilable s
ript for a Lazy version of LU fa
torization
89
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1 #in
lude "mpi.h";2 #in
lude "PLA.h"3 int Lazy(PLA_Obj A)4 {5 <variables are de
lared>6 PLA_Obj_template(A, &MyTemplate);7 /*Create usual 
onstants*/8 PLA_Create_
onstants_
onf_to(A,&ms
alarspe
ialnegone,&ms
alarspe
ialzero,&ms
alarspe
ialone);9 /*UserWarning: Square ShapeSpe
 not yet enfor
ed ... rule not fired*/10 PLAlength1 = 0 ;11 PLAwidth1 = 0 ;12 PLA_Obj_split_4( A, PLAlength1, PLAwidth1 , &ATL, &ATR, &ABL, &ABR );13 for(;;) {14 PLA_Obj_global_length( ABR, &PLAEnderLength);15 PLA_Obj_global_width( ABR, &PLAEnderWidth);16 if( PLAEnderLength == 0 && PLAEnderWidth == 0) break;17 PLA_Obj_split_size( ABR , PLA_SIDE_TOP , &PLAlength2, &dummyint );18 PLA_Obj_split_size( ABR , PLA_SIDE_LEFT , &PLAwidth2, &dummyint );19 nb = min (PLAlength2 , PLAwidth2 );20 PLA_Obj_view_all (ATL, &A00);21 PLA_Obj_vert_split_2( ATR, nb , &A01, &A02 );22 PLA_Obj_horz_split_2( ABL, nb , &A10, &A20 );23 PLA_Obj_split_4( ABR, nb, nb , &A11, &A12, &A21, &A22 );24 /******************************************************************/25 PLA_Trsm( PLA_SIDE_RIGHT , PLA_UPPER_TRIANGULAR , PLA_NO_TRANSPOSE ,26 PLA_NONUNIT_DIAG , ms
alarspe
ialone , A00 , A10 );27 PLA_Trsm( PLA_SIDE_LEFT , PLA_LOWER_TRIANGULAR , PLA_NO_TRANSPOSE ,28 PLA_UNIT_DIAG , ms
alarspe
ialone , A00 , A01 );29 PLA_Gemm( PLA_NO_TRANSPOSE , PLA_NO_TRANSPOSE , ms
alarspe
ialnegone ,30 A10 , A01 , ms
alarspe
ialone , A11 );31 PLA_Lo
al_LU(A11);32 /*******************************************************************/33 PLA_Obj_join_4( A00, A01, A10, A11, &ATL );34 PLA_Obj_horz_join_2( A02, A12, &ATR );35 PLA_Obj_vert_join_2( A20, A21, &ABL );36 PLA_Obj_view_all( A22, &ABR );37 }38 < obje
ts are freed>39 } /*End of Program*/Figure 4.9: PLAPACK/PFLAMBE 
ode produ
ed by the PLANALYZER
90
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4.5 Chapter SummaryWhile 
omputer 
ode relies on what is underneath it, a \paper library" is not similarlydependent. Su
h a library assumes 
ertain underlying fun
tionality; it need not des
ribe,down to the \bones" of the hardware, everything that must be done. This allows an expertin a higher-level domain to supply a library that needs to have its slots �lled [57℄. Thetraditional method supplies the pegs instead of the pegboard [5℄.The important point is that a library either has to have the \right" level of modular-ity or multiple levels of modularity. Either avenue allows the user to program in a reasonableway, but it might be that only the latter situation really allows for ma
hine-dependent op-timizations to be 
arried out.The automated 
ode generation system des
ribed in this dissertation is an attemptto supply the \best of both worlds" to the user. The s
ripts would be 
onsidered under-spe
i�ed and employing the PLANALYZER allows the automated 
oupling of this \paperlibrary" to an underlying, en
oded library.
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Chapter 5Automati
 Analysis of anImplementationThis 
hapter presents an analysis strategy and a prototype implementation that utilizes theapproa
h presented in this resear
h work. This is important to the resear
h presented herebe
ause the ability to determine the 
omplexities and 
osts of algorithms is useful when
onstru
ting and maintaining linear algebra libraries.First, the synergisti
 relationship between analysis and the design strategy, alreadypresented, is introdu
ed. Then the various \formats" of analysis are mentioned along withadditional information regarding the parameters the analysis engine is intended to ana-lyze. Finally, the potential intera
tion between the analysis tool and the algorithmi
 s
riptlanguage is dis
ussed.5.1 MotivationRe
all the example of Eager LU fa
torization illustrated in Figure 5.2. We 
onsider the taskof analysis by examining a s
ript annotated with dire
tives su
h as those given on lines 20and 22-32 of that Figure. An example s
ript may be seen in Figure 5.3, while an illustrationdepi
ting this 
hapter's pla
e in the overall s
heme of the do
ument is depi
ted in Figure 5.1.Noti
e that the s
ript in Figure 5.2 makes only minor 
on
essions to issues of imple-mentation. The only indi
ation that the s
ript is intended for a parallel ar
hite
ture lies inthe annotations related to determining the size and data lo
ality of A11. By way of 
ontrast,the PLAWright 
ode in Figure 5.3 not only 
ontains dire
tives that relate to the role of A11in matrix partitioning, but lower-level 
ode that enfor
es where 
omputation takes pla
e byexpli
itly handling the 
ommuni
ations involved. Further, that same s
ript requires that aspe
i�
 routine (PLALu1) be used to perform the lo
al LU fa
torization and that the analysisengine should ignore what is in the performan
e se
tion of the annotated library and applythe line-by-line performan
e measures in
luded in the s
ript.92
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Figure 5.1: Where the analysis system �ts into the \grand s
heme" of things.The task of analyzing the \simpler" s
ript by hand involves a number of hurdles.First, one must determine what routines are involved. Then one must determine the per-forman
e 
hara
teristi
s of those routines. After one has determined su
h 
hara
teristi
sfor ea
h operation in the s
ript, it is ne
essary to apply the analysis as the loop exe
utesand the partitioning 
hanges the size and shape of ea
h obje
t. While the appli
ation ofline-by-line, annotated 
omplexity estimation (as is seen in Figure 5.3) is also error-pronewhen done by hand, it does obviate the need to determine the performan
e 
hara
teristi
sof the routines involved. In either 
ase, the task then be
omes making the resultant formulauseful in some manner.There seems to be no es
aping these problems unless one automates the pro
ess.Given an underlying library that is not \smart" (i.e. one that does not 
hoose the bestalgorithm for the required operation), the simpler s
ript for
es the analyst to sort throughall appli
able routines in the library in order to determine the best routine available. Anintelligent library attempts to pi
k the most eÆ
ient 
oding unit for ea
h operation, but thismakes the analysis task onerous be
ause \the best" 
hanges as the matrix sizes and shapes
hange throughout the 
ourse of exe
ution. While the highly annotated s
ript's analysisburden is un
hanged, the a

ura
y of that analysis is questionable in this 
ase be
ause agreat many simplifying assumptions are impli
it in the per-line dire
tives.Therefore, automating the system of 
ode produ
tion in su
h a way that the pro-93
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1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ; // (* A
tually, Square here *)4 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)5 U === A ; // {Re
ursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is lo
al and19 A11 is lo
ally square and20 A11 is nb by nb ; // No larger than is implied2122 A11 = (L11\U11) <- lu_fa
t(A11) ;23 A12 = U12 <- L11^-1 * A12 ;24 A21 = L21 <- A21 * U11^-1 ;25 A22 <- A22 - L21 * U12 ;26 partition27 / ATL # ATR \28 |###########|29 \ ABL # ABR / <= / A00 | A01 # A02 \30 |------------------|31 | A10 | A11 # A12 |32 |##################|33 \ A20 | A21 # A22 / ;34 enddo;35 L =!= A;36 U =!= A;Figure 5.2: Computer-readable s
ript for Eager version of LU fa
torization
94
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1 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)2 U === A ; // {Re
ursive} {Permanent}3 L has_property unit_lower_triangular ; // (* Permanent Property *)4 U has_property upper_triangular ;5 A has_property square ; // (* A
tually, Square here *)6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR / => / A00 # A01 | A02 \13 |#################|14 | A10 # A11 | A12 |15 |-----#-----------|16 \ A20 # A21 | A22 /17 where A11 is lo
al and18 A11 is lo
ally square and19 A11 is nb by nb ; // No larger than is really implied20 Performan
e performan
e_override("2*nb*nb*nb/3");21 fun
tion_override("PLALu1");22 A11 = (L11\U11) <- lu_fa
t(A11) ;23 EndPerforman
e;24 Performan
e performan
e_override("B
ast( nb * nb * 1/2) to PCC");25 Lower[L11tri℄ |* <- Lower[L11℄ ;26 EndPerforman
e;27 A12 = U12 .<- Lower[L11tri℄^-1 * A12 ;28 U11tri -* <- Upper[U11℄ ;29 Performan
e performan
e_override("1/2 * nb * nb * Max(Length(Lo
al(A21)))");30 A21 = L21 .<- A21 * Upper[U11tri℄^-1 ;31 EndPerforman
e;32 Performan
e performan
e_override("B
ast(nb * Max(Length(Lo
al(L21)))) to PCC");33 L21
ol |* <- L21 ;34 EndPerforman
e;35 U12row -* <- U12 ;36 A22 .<- A22 - L21
ol * U12row ;37 EndPerforman
e;38 partition39 / ATL # ATR \40 |###########|41 \ ABL # ABR / <= / A00 | A01 # A02 \42 |------------------|43 | A10 | A11 # A12 |44 |##################|45 \ A20 | A21 # A22 / ;46 enddo; Figure 5.3: Annotated s
ript for Eager version of LU fa
torization
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du
ed 
ode and the produ
ed analysis rooted in the same pro
ess is a promising avenue ofresear
h and it is detailed in this 
hapter.5.2 Issues5.2.1 Why Performan
e Is ImportantIt seems to be taken for granted that performan
e is important, but why is that? It is oftenthe 
ase that an individual does not need an answer immediately. Further, until Moore'sLaw runs out of steam, we are fa
ed with an ever-faster array of pro
essors. Thus, expendinge�ort on optimizing 
ode in order to improve performan
e by a few per
ent may involveunwise allo
ation of resour
es.Certainly, this is a questionable pra
ti
e if that optimization e�ort takes a great dealof time and has limited value. Chapter 3 sought to address the issue of programming easeand speed. If performing this optimization requires a small investment of expert resour
es,it may make sense to do so. In addition, it does not do mu
h good to predi
t tomorrow'sweather if the task is not 
ompleted until the day after tomorrow; some problems are su
hthat they 
an take advantage of both the fastest ma
hines and the fastest algorithms.5.2.2 Why Performan
e Analysis Is ImportantA basi
 question that may be asked is: \Is performan
e analysis ne
essary?" Obviously,it is not. There are many numeri
al libraries, both abstra
t and 
on
rete, devoid of anyanalyti
al tools. However, there are drawba
ks to that approa
h.The �rst, and probably most important, disadvantage is seen when attempting tooptimize su
h a library for a new ar
hite
ture. Without formulai
 guidelines it is diÆ
ultto predi
t how any given 
hange will a�e
t the performan
e of di�erent parts of the exe-
utable. Similarly, it be
omes diÆ
ult to determine where optimization e�orts should be
on
entrated. One may be unable to readily determine if the problem lies in the algorithmor in a spe
i�
 realization of that algorithm. Sin
e there is no systemati
ally predi
tedperforman
e, there 
an be no \red 
ags" that indi
ate unexpe
tedly poor performan
e [37℄.Predi
ting Performan
eTrying to remedy systemati
 de�
ien
ies by running a empiri
al tests is also an ill-
onsideredapproa
h. This method is time-
onsuming and tends to be resour
e-intensive. More impor-tant, the results of a large number of these tests may be required in order to determine whatparts of the algorithms are responsible for 
ost overruns. While it may be possible to takea large amount of empiri
al data along with information about shared sub-
omponents ofthe algorithms and use statisti
al analysis to determine where the bottlene
ks are, it wouldbe problemati
 to do so for at least two related reasons.The �rst roadblo
k to this approa
h is the huge amount of data ne
essary for su
han analysis when dealing with a large, monolithi
 library. There are simply too many96
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variables to make this purely statisti
al method pra
ti
al. The se
ond problem is even morefundamental and diÆ
ult to over
ome. Potential \feature intera
tion" would require thatan exponential number of test 
ases be analyzed.There are a number of sour
es for poor library performan
e, but all 
an be said tobe in one of two major 
ategories:1. Routines with poor predi
ted performan
e.2. Routines with performan
e that is poor (although not ne
essarily predi
ted to beso) [37℄.It is not always the 
ase that the hindran
es 
an be 
lassi�ed as belonging ex
lusively toeither 
ategory unless one employs a modeling strategy.Determining the Sour
es of Performan
e Short
omingsThe algorithm itself is a potential sour
e of ineÆ
ien
y. As this is the 
ore of an implementa-tion, it 
an be the sour
e of the greatest di�eren
es in a
hieved performan
e. Analysis toolsmay not 
onstru
t a superior algorithm from an inferior one. However, they 
an be usedto indi
ate the short
omings in an algorithm and, possibly, to suggest algorithmi
 
hangesthat will result in superior performan
e. These 
lues may result from 
ontrasts between twoalgorithms intended to perform the same task, or from a mismat
h between the performan
ethat the user predi
ts, based on experien
e with similar algorithms, and the performan
epredi
ted by the analyti
al engine (with its built-in knowledge of the underlying algorithmi
and ar
hite
tural intera
tions).It is not surprising that the implementation of the algorithm 
an be the sour
eof variations in performan
e. There are some potential sour
es of ineÆ
ien
y that applyonly to the parallel 
omputational 
ase, while others apply to both the serial and parallelinstan
es. These sour
es in
lude the use of improper 
ommuni
ation algorithms, a mismat
hbetween theoreti
al models and real ma
hines, and unfortunate assumptions about the useof pro
essor and memory resour
es and their intera
tions.We note that it is sometimes diÆ
ult to determine when the performan
e failings arethe result of poor algorithmi
 design or implementation details. For example, if one takes ahigh-level view, it is possible to predi
t superior performan
e in an algorithm. Yet, one mayknow that the algorithm will translate into an implementation that has poor performan
eregardless of the real ma
hine used. Alternatively, this poor performan
e may be 
ompletelydependent on the details of the underlying 
omputational system.Code SteeringWe wish to have the PLANALYZER sele
t the \best" algorithm in a given situation, butwe also wish to equip the end-user/programmer with the ability to guide the system to aroutine/method that he believes is better (or wishes to study). Therefore, whatever methodsare used, (in
remental) user-intera
tion should be kept in mind even if the software doesnot present a \point-and-
li
k" type of interfa
e.97
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5.2.3 Convenien
e vs. Performan
eThe analysis framework and tools should help to assuage a typi
al fear about s
riptedlanguages. Namely, that they are 
onvenient to use, but their performan
e tends to bepoor. A

epted wisdom holds that trying to retain this ease of expression as one migratesto a parallel environment is likely to exa
erbate these problems. One 
an �nd any numberof examples where this \rule of thumb" does, in fa
t, hold true [20℄.The development system presented here attempts to address both 
onvenien
e andperforman
e 
on
erns. Allowing this freedom is an e�ort to strike a balan
e between toomu
h and too little guidan
e being provided by the software. It is made possible by makingthe ability to 
leanly mix the layers of annotation and s
ripting a 
entral 
on
ern.There are a number of ways in whi
h this work deals with performan
e 
onsidera-tions. We assume that the underlying library (the target of s
ript translation) is made upof eÆ
ient routines. Therefore, a s
ript translated into a set of 
alls to that library shouldalso be eÆ
ient.If the performan
e of the existing 
ode segments is analyzed properly and if a sys-temati
 way of gluing them together intelligently to perform the new algorithm 
an be
onstru
ted, high-performan
e should be a
hieved. Here, \high" is de�ned to be as perfor-man
e 
omparable to that whi
h someone intimately familiar with the underlying library
ould e�e
t.User Bene�tsThe potential bene�ts yielded by our analysis tools, largely mirror those of hand
raftedanalysis. Analysis tends to provide guidan
e for algorithm and implementation tuningalong with information regarding 
ase-spe
i�
 proximity to optimal performan
e.While this sort of a
tivity 
an be done by hand, it is made mu
h easier by 
omputerassistan
e in a number of ways. First, when one is dealing with a large library, the individualanalysis tasks are time-
onsuming. The determination of relationships and intera
tionsbetween routines is more so. In addition, from a psy
hologi
al point of view, this a
tivityrequires shifting ba
k and forth between di�erent 
on
erns and that tends to impose an evengreater time penalty on the designer.The most obvious bene�t to analysis tools is the ability to qui
kly and dynami
allydetermine the 
omplexity of a given algorithm or implementation. This allows the designerto determine the eÆ
ien
y of the algorithm at various levels of detail. One does not have towaste time tuning an algorithm of inherently sub-optimal 
omplexity. Further, when dealingwith a multi-tiered algorithm, the analysis may reveal patterns a
ross and intera
tionsbetween di�erent levels and modules.While the analysis system may not suggest solutions for unne
essary intera
tions,
ouplings, and dependen
ies, it 
an make them obvious to the experien
ed designer andmore apparent to the novi
e. In a similar manner, the analysis system may reveal 
aseswhere the spe
i�
ity of the situation is not being taken advantage of by the designer.98
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User ResponsibilitiesThe responsibilities of the motivated user who wishes to exploit all of the abilities of theanalyzer are too situation-dependent to be detailed here. This se
tion, instead, gives andintrodu
tion to the features and requirements of the system as they relate to the \
asual"user. The user must supply input to the analyzer in a form that the analyzer 
an read.However, the programmer need not be 
on
erned with how heavily annotated his s
ripts arebe
ause the output form of analysis is not entirely dependent upon the form of the input.The other matter is the spe
i�
ation of the output. There are many potential formsthat output might take. While there are default settings, the PLANALYZER also allows forthe spe
i�
ation of di�erent ways in whi
h to measure (e.g. operation 
ounts, time takenet
.), di�erent forms of expression, and exa
tly what to measure (e.g. 
ommuni
ation timeonly).5.2.4 Traditional Approa
hesTypi
ally, algorithmi
 analysis in this area has been both manual and somewhat ad ho
. Theusual s
enario involves the analysis of an algorithm as a stand-alone example. The reasonsbehind performan
e di�eren
es in variations on an algorithm are largely hidden be
ause ofthe monolithi
 nature of the analysis.5.2.5 Problems with Traditional Approa
hesWhile su
h an analysis may be a

urate, it is not as useful as it might be. Without asystemati
 approa
h to the analysis of a family of algorithms, it is diÆ
ult to determine the
omparative advantages and disadvantages of the algorithms. Spe
i�
ally, this approa
h isof severely limited value in the 
onstru
tion of hybrid or polyalgorithmi
 variants [40, 56℄.5.2.6 A New Approa
hGiven a systemati
 approa
h 
arried through the design of a library, one 
an analyze al-gorithms that rely on the 
omponents of that library. It is the intera
tion between levelsof the library that tends to make this analysis diÆ
ult. A 
onsistent approa
h in librarydesign leads to a 
onsistent pattern of intera
tion.Resear
h into the issue of hybridization [40℄ gave us some insight into how useful thesystemati
 
onstru
tion of the algorithms and the layering of the library were when it 
ameto a

urately modeling the target 
omputational environment. Preliminary tests showedthat these analyti
al models were reasonably a

urate.This systemati
 nature also provides for the 
onstru
tion of automated analysis tools.These tools allow for a more systemati
 and informed approa
h to the optimization task thatis typi
ally so onerous in the absen
e of a uni�ed approa
h, let alone su
h an automated tool.The 
entral idea is that the performan
e annotations mirror the 
ode that, in turn, mirrors99
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the algorithm. Thus, to use the tool, one only need be an \expert" in the 
onstru
tion ofalgorithms.By 
ompiling the algorithmi
 s
ript into both a fun
tional program and an analyti
al
ode readable by theMathemati
a [77℄, symboli
 manipulation pa
kage, one 
an intera
tivelydevelop and analyze these algorithms immediately, in the same, automated environment.Further, these analyses need not be tied to a single set of expressive primitives, su
h as timerequired, but may be re-formulated in terms of operation-
lass 
ounts, et
.5.2.7 Coupling Code and Performan
eThe module-dependen
y graph of a systemati
ally 
onstru
ted, layered library has fewerleaves than that of a haphazardly 
onstru
ted library providing 
omparable fun
tionality. Ifwe implement our own 
ommuni
ations library in terms of some set of primitives, we havemore 
ontrol and fewer mi
roben
h tests to perform. The same approa
h 
an be extended toa very low level, but there is a trade-o�. We must determine how sophisti
ated to make the
ode ! performan
e parser and the right balan
e to strike between readability, a

ura
y,and work-intensity. Annotating the library at too high a level, results in a

ura
y at the
ost of having to ben
hmark and annotate too many routines. Doing so at too low of a levelmakes the intermediate form of performan
e 
ode diÆ
ult to simplify. It is logi
al to makethe annotations look like 
ode to as great an extent as possible so that both are readableand so that it is not ne
essary to learn a new \language" for ea
h task.Library StrataOne of the most basi
 reasons for the requisite 
exibility of the modeling strategy is thatwhat 
omprises an \operation" 
hanges as one pro
eeds in designing, implementing, andre�ning an algorithm. For the tool to be useful it must be able to address the needs of thedesigner as his view of the operations 
hanges. While this 
an be motivated in the sequentialarena, it is more straightforward to do so in the 
ontext of a parallel environment.Consider a simple algorithm like the outer-produ
t 
omputation that was dis
ussedin the LU de
omposition algorithm. Obviously, in the distributed 
ase there are a number ofways to de�ne what it means to perform a matrix-matrix multipli
ation. For instan
e, thereis the entire multipli
ation: A22  A22�~a21~aT12. Even if we ignore details of implementation,we may 
onsider the time spent performing the 
al
ulation to be restri
ted to the timespent doing so on a given pro
essor. We may wish to ignore time taken to perform themanipulations involved. Further, we may 
onsider some of the implementational issues thatarise as part of the SUMMA algorithm. We may wish to perform the matrix multipli
ationwith a set of 
olumns (e.g. A21 instead of ~a21) in whi
h 
ase \the multipli
ation" may beany of the 
omponent multiplies, global or lo
al, of this larger multipli
ation. Therefore,the analysis system must allow a shift between these di�erent views.Independent of the form the analysis takes, two fundamental questions must beanswered:1. What qualities are to be analyzed? 100
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2. In what quantitative terms should these qualities be expressed (i.e. what are the\units" of analysis)?In the area under study, the answers to these questions are readily available. Theanalysis system measures the time and memory required to perform a given algorithm.Su
h qualities have generally a

epted unit-measures; time is generally measured in CPU(milli-/mi
ro-) se
onds while memory used is measured in (kilo-/mega-) bytes.While these two answers provide all that one may require from a system geared topurely pra
ti
al analysis, the features that they enable may not be suÆ
ient for a 
exibleanalyti
al tool for a number of reasons. The most basi
 diÆ
ulty is that these measurementquanta may not allow the measurements to be expressed in a manner desired by the user.For example, if one wishes to determine the number of matrix-matrix produ
ts that areperformed, time and spa
e 
omplexity measures may not ne
essarily yield useful information.However, intelligent stru
turing and base-level spe
i�
ations yields a set of 
onstru
ts that
an be used to express both. Further, there are guidelines that help one to determine thekinds of primitives that must be provided if a 
ertain kind of feedba
k is desired.Parameters of AnalysisOne should be able to use 
ase-spe
i�
 information during the analysis of an algorithm.Certain measures have no meaning if one does not have a ma
hine model, but do not requirea ma
hine instan
e in order to be de�ned. Other measures require a fully-spe
i�ed ma
hine(and problem) environment in order to have meaning. Given these fa
ts, the analyzer isdesigned around a set of primitives that yield great 
exibility in these areas. Furthermore,to fa
ilitate feedba
k in the desired format, the underlying language should provide for thedynami
 (user-based) 
reation of new \
on
epts."Let us be more 
on
rete. The useful obje
t-based abstra
tions under 
onsidera-tion: manipulation, 
al
ulation, and property determination, have already been dis
ussedin Chapter 3. Almost any non-trivial algorithm uses all of these abstra
tions. Therefore,the analysis must involve, or allow the involvement of, all three. The 
aveat in regards toallowing the in
lusion of measures for some abstra
tions is in
luded as one may also wishto ignore 
ertain measures. Most obviously one might wish to dis
ount property determina-tion as this 
al
ulation is often 
omputationally trivial. Further, one might wish to ignoremanipulation time and spa
e 
omplexity. Alternatively, when one wishes only to 
onsiders
alability issues, it is often 
onvenient to ignore everything ex
ept the time spent in themanipulation (
ommuni
ation) subsystem. It is not diÆ
ult to 
reate other 
ases whereinone might wish to 
onsider only parts of some of the abstra
tions while ignoring others.There are many ways to 
onstru
t the framework of this analysis system and theimplemented 
omputational engine. It seems ne
essary to allow the user a great deal of
ontrol over the primitives and 
on
epts 
omposed from those primitives. However, it wouldseem that there should be a 
ertain \default" setting that is both 
exible enough to providea tool for users with many disparate needs and 
onventional enough to provide feedba
k in aformat that is 
ommonly seen in papers on the analysis of similar algorithms. The primitives101
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provided should be useful in a wide range of analysis tasks. This is be
ause the extension ofthe PLANALYZER through the in
lusion and de�nition of new primitives requires greaterexpertise than is pra
ti
al to expe
t.While it may seem a bit 
onfusing to mix terminology with regard to analyzingalgorithms and analyzing programs, perhaps it should not. In a distributed 
omputationalenvironment, it may be possible to ignore the model versus implementation distin
tion. It isprobably most useful to think of physi
al 
omputational systems as somewhat 
ompli
atedmodels. This is not a new idea; any system 
an be mimi
ked with a 
omplex enough modelvia su

essive re�nement. This dissertation fo
uses on providing a useful model as wellas a systemati
 way to determine a base set of primitives that have to be evaluated soas allow the determination of fully quanti�ed results. We are 
on
erned with the 
laritywith whi
h the tool under 
onsideration here supplies information. However, the goal ofautomating the kind of performan
e pro�ling that has traditionally been done by hand isalso a 
onsideration.Analysis of ComponentsIn order to perform analysis by 
omposing \building blo
k" analyti
al modules, some baselevel of analysis must be determined. The simplest form of 
omposition would be theunadorned addition of these 
omponents (formulae). In this se
tion, we assume that thisis how analysis is 
arried out. Later se
tions dis
uss why this simple approa
h may beinsuÆ
ient.The previous se
tion dis
ussed some of the issues that need to be 
onsidered inthe 
onstru
tion of the analysis tool. Among these was the determination of what is tobe measured, in what terms that measurement is to be expressed, and what makes upthe primitive set. Let us, for the moment, restri
t ourselves to a small but useful set ofmeasurements; the �; �; and 
 time-
omplexity set. Here, � is the start-up 
ost for amessage, � the 
ost per item sent, and 
 the time per 
omputation. This is a simple view,spe
ialized for the distributed 
omputing 
ase. However, there are analogies to � and � ina serial ar
hite
ture, and multiple 
s 
an be used, so this model is useful.The next task is to determine whi
h 
omponents must be measured. The last se
tiondis
ussed why this is a question. Let us suppose that we have made a utilitarian de
ision.If we wish to analyze a library, we 
an express the lowest layer (the leaves) in terms of theprimitive measures (the �; �; and 
 mentioned previously) and des
ribe the other layersin terms of those beneath them. There is a trade-o� between a

ura
y and annotativeexpedien
y with this approa
h favoring the latter.While the assumption is that the library is layered, this is not stri
tly ne
essary.Many modern software pa
kages, su
h as Sni�+ [12℄, automati
ally determine the 
allingstru
ture of a set of routines. From this dire
ted graph, it is possible to 
onstru
t a 
om-plexity model from the leaves \in." While this situation is not optimal, it does not presentan insurmountable blo
k to the analysis strategy dis
ussed in this 
hapter.One problem that may o

ur to the reader involves the modeling of the leaves. Theleaves do not rely upon any other (visible) routines. Typi
ally, one performs empiri
al102
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measures on these 
omponents for various problem and 
omputational grid sizes and thenuses something akin to a line of best-�t to express their 
omplexity. These routines oftenhave performan
e 
hara
teristi
s whi
h are dependent on problem-spe
i�
 details su
h asoperand shape. The user needs to determine the level of a

ura
y that they require of theanalysis system in order to determine how highly re�ned the base-level analyti
 models needto be.Synthesis of Component-AnalysisWe assumed that the analysis of a 
omponent that utilizes other analyzed 
omponents asbuilding blo
ks was a solved problem. Let us 
onsider the fa
t that we may eventually wishto simplify the resulting analyses. In that 
ase, to analyze a 
omponent it may be bene�
ialto synthesize the analysis of the sub-
omponents whi
h make up the routine (
omponent)to be analyzed.The most obvious appli
ation of \synthesis" is the simpli�
ation of the impli
itsummations that o

ur over a looping 
onstru
t within a routine. On
e the summation ismade expli
it, simple mathemati
al substitutions 
an be made to redu
e the 
omplexity (asmeasured by lexi
al length) of the expression.It should be pointed out that this synthesis is not always a good idea. For, if oneperforms the synthesis at the lowest level, it may be 
onsiderably more diÆ
ult to 
ombineexpressions at higher levels without sa
ri�
ing a

ura
y.5.3 Contributions of the Systemati
 UnderpinningsApproa
hing the design of linear algebra algorithms in a systemati
 fashion redu
es the dif-�
ulty of the analysis task. Our approa
h to algorithmi
 and library 
onstru
tion tends tosimplify and make expli
it the relationships between di�erent parts of the programs as theyrelate to overall performan
e. Often, implementors optimize algorithms in a 
ompartmen-talized fashion. They rely on intuition and experien
e rather than 
omplexity measures todrive their optimizations and tend to view ea
h improvement without 
onsidering its impa
ton the larger pi
ture.Perhaps this is almost unavoidable when the routines to be optimized are parts ofa library with no underlying framework. The analysis required in su
h a 
ase 
ould bemonumental. There are two major roadblo
ks to be 
onsidered:� Monolithi
 
onstru
tion methodology and� Modular, but poorly thought out, 
onstru
tion pra
ti
esIf the library is modularized, the di�erent routines tend to 
all on one another. However,modularity does not imply design soundness, and these relationships between modules maynot follow any dis
ernable pattern. The 
ombination of these two properties 
ompli
ates theanalysis task. The monolithi
 alternative may seem preferable as that strategy avoids the
ompli
ations 
aused by module intera
tions. Unfortunately, that approa
h yields a new103
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analysis task for every derived algorithm and fails to provide any sort of framework fromwhi
h to gain leverage from the analyses already performed. Not only does this result in morework for the analyst [70℄, but it also seems to disallow even the possibility of determiningmeaningful patterns unless the spe
i�
ation of the sub-
omponents is systemati
.Conversely, if the software system is built with a uni�ed approa
h and utilizes asystemati
 methodology to build the algorithms, not only is the 
onstru
tion pro
ess eased,but the analysis is 
onsiderably less 
ompli
ated. The design pro
ess allows one to followthe framework of the supplied algorithms. Sin
e analysis tasks 
an mirror the stru
ture ofthe obje
ts of their analysis, they 
an be 
onstru
ted top-down, bottom-up, or middle-outalong with those algorithms. It should also be noted that the algorithmi
 design 
ould followthe analyti
al work.Many of these bene�ts 
ome \for free" when the modularity of the software is pre-sumed to be logi
al and easily understood. However, most of them are simply enabled bythis systemati
 
onstru
tion. There is still something of an onus on the (low-level) designerto spe
ify the fun
tionality, 
omplexity types, parameters, and measures to the analysisengine, but it should be noted that:1. The layered 
onstru
tion, in 
on
ert with the FLAME methodology, eases the deter-mination of the patterns seen in a given algorithm and2. The formulai
 spe
i�
ation of these patterns opens the door for a systemati
 
lassi�-
ation of these patterns [43℄).5.3.1 Modularity of the Analyti
 HarnessThere has already been 
onsiderable dis
ussion about the various uses of and advantages toan integrated analysis strategy and system. This se
tion attempts to point out the di�eringimpa
t that su
h tools have on various types of libraries.One must 
onsider the manner in whi
h a designer would intera
t with the designsystem. Thus, the �rst subse
tion deals with issues related to hand-built software systems aswell as presenting some synthesis of the relevant ideas already dis
ussed. The next subse
tiondeals with the more pertinent ideas in relation to automated library 
onstru
tion. Giventhe 
ookbook nature of the algorithmi
 
onstru
tion and analysis, systemi
 automatizationappears to be a realizable goal.Impa
t on Manually Assembled SystemsTypi
ally, a library, even if 
onstru
ted in a very systemati
 way, is hand-written by pro-grammers (or non-programmers in the 
ase of \paper" libraries mentioned in Se
tion 4.5).Sin
e this approa
h to library 
onstru
tion is the one most appli
able to both well designedand poorly designed libraries, let us 
onsider what 
an be done in the latter 
ase (as theformer has mu
h in 
ommon with the automated situation dis
ussed in Se
tion 5.3.1).While the well-integrated, 
exible analysis tools dis
ussed here are not entirelyamenable to use in a \disorganized" environment, it might be possible to gain some ad-104
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vantage from them. If the analyst is willing to delve into the parti
ulars of the 
ompositionand analysis stru
ture, it may be possible to regain some of the 
exibility possessed by thetools in the more well organized 
ase.The �rst assumption is that the 
ode to be analyzed is neither written in the s
riptlanguage nor in a style that mirrors that language. This assumption is made be
ause if itis written in that style, the analyzer 
an be used on the s
ript or on something that 
an bereverse-engineered from the 
ode.The easiest way to use the analysis tools in this 
ase would be to hand-translate thegiven 
ode into the 
orresponding s
ript. One might have to translate a number of routinesinto the s
ript language before getting meaningful feedba
k from the automated system.However, the user might wish to de
lare the routines themselves as primitives, or use theanalysis engine's abilities to rede�ne \
on
epts," and supply their own 
omplexity measuresfor the routine.This approa
h is may result in analyses that la
k 
omprehensibility or fail to re
e
talgorithmi
 modi�
ations. Both of these problems 
an be ameliorated to some degree ifthe user is 
areful in their design of primitives and 
on
epts, making them 
ompatible withthe remainder of the automated analysis engine. While it may be that the engine la
kssome of its former ability to simplify the resultant equations, little should be lost in termsof re
e
ting algorithmi
 
hanges if the user is 
areful to provide layers similar to thosedis
ussed here. The analysis engine should also be modular and layered as is the 
ase withthe prototype under 
onsideration in this 
hapter.Impa
t on Automated SystemsWe now begin a dis
ussion regarding how the analysis engine may aid the automationpro
ess and how automation makes the analysis 
hore simpler. At the same time, we needto address what is required of the user.Given an automati
 tool for the 
onstru
tion of these algorithms, this system mightbe used to hybridize algorithms already instantiated. Given an algorithm for 
omputingfun
tion A using method I, the system presented in this dissertation 
ould generate methodsII and III. Ea
h method has its advantages and disadvantages. Often determining when onealgorithm is superior to another is a 
omplex task. Given an engine that generates equationsthat 
an be evaluated on the 
y, su
h hybridization would be
ome me
hanized. This sameapproa
h 
ould prove useful in the 
ase that several levels are simultaneously hybridized.However, it be
omes less reasonable to ignore evaluation (sele
tion) time as one goes downto lower levels of the memory hierar
hy.Many of the issues relevant to the analyti
al tool are independent of this generator.Su
h a tool 
ould be used to sele
t the \best" algorithm from a library, even when thatlibrary has nothing to do with the system des
ribed here, provided that some sort of \hand-shaking" between requirements and provided servi
es [30℄ 
an be performed. If the system
an determine that a given routine ful�lls the requirements of a given \
all," then the system
ould take pre-evaluated information about these \gray box" routines and determine whi
hvariant is optimal in a given situation. 105
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5.4 Implementation: Automated AnalysisThus far we have dis
ussed what is desirable in the abstra
t. Now, we delve into issues ofimplementation. To review the 
urrent stage of the pro
ess as it now stands, the reader isreferred to Figure 5.4. In parti
ular, the reader's attention is dire
ted to the two boxes inthe lower-right quadrant of that Figure.

Figure 5.4: The position of the analysis engine in the 
ontext of the implemented system.5.4.1 An Analysis-Ready S
riptLet us 
onsider a s
ript presented in the pre
eding 
hapter, Figure 4.4 (page 75). Re
allthat this algorithm is a version of the Eager variant to LU fa
torization. In that s
ript, theuser expli
itly 
ontrols the data distribution so that only lo
al 
omputations (
omputationalkernels) are required. In Figure 5.5, a repli
ation of Figure 5.3, two lines (25 and 28) of thiss
ript are annotated with their asso
iated 
ost.5.4.2 Explanation of S
ript Extensions and Line-Cost EstimatesA few questions may arise upon viewing this annotated s
ript (Figure 5.3). For example,one might ask why some of the lines have no asso
iated 
ost. This s
ript re
e
ts a somewhatarbitrary de
ision. The rationale is that those operations that have a 
ost whi
h does not106
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1 L === A ; // {Re
ursive} {Permanent} (* Establish name equivalen
e *)2 U === A ; // {Re
ursive} {Permanent}3 L has_property unit_lower_triangular ; // (* Permanent Property *)4 U has_property upper_triangular ;5 A has_property square ; // (* A
tually, Square here *)6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR / => / A00 # A01 | A02 \13 |#################|14 | A10 # A11 | A12 |15 |-----#-----------|16 \ A20 # A21 | A22 /17 where A11 is lo
al and18 A11 is lo
ally square and19 A11 is nb by nb ; // No larger than is really implied20 Performan
e performan
e_override("2*nb*nb*nb/3");21 fun
tion_override("PLALu1");22 A11 = (L11\U11) <- lu_fa
t(A11) ;23 EndPerforman
e;24 Performan
e performan
e_override("B
ast( nb * nb * 1/2) to PCC");25 Lower[L11tri℄ |* <- Lower[L11℄ ;26 EndPerforman
e;27 A12 = U12 .<- Lower[L11tri℄^-1 * A12 ;28 U11tri -* <- Upper[U11℄ ;29 Performan
e performan
e_override("1/2 * nb * nb * Max(Length(Lo
al(A21)))");30 A21 = L21 .<- A21 * Upper[U11tri℄^-1 ;31 EndPerforman
e;32 Performan
e performan
e_override("B
ast(nb * Max(Length(Lo
al(L21)))) to PCC");33 L21
ol |* <- L21 ;34 EndPerforman
e;35 U12row -* <- U12 ;36 A22 .<- A22 - L21
ol * U12row ;37 EndPerforman
e;38 partition39 / ATL # ATR \40 |###########|41 \ ABL # ABR / <= / A00 | A01 # A02 \42 |------------------|43 | A10 | A11 # A12 |44 |##################|45 \ A20 | A21 # A22 / ;46 enddo;Figure 5.5: Optimized s
ript for Eager method of LU fa
torization with performan
e anno-tations
107
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depend on the size of the obje
t and are low enough so as to be 
onsidered \noise" areignored and others are assigned the 
omplexity measures 
orresponding to the performan
eannotations provided by the library. Our fo
us is on the on the 
riti
al path of exe
utionand those fun
tions whi
h 
ontribute to it. Thus, global operations are the items of greatestimport and re
eive the most attention in the analysis phase. The se
ond easily motivatedquestion regards the line-by-line 
ost assignment. One 
ould have assigned a 
ost to theentire s
ript or to every do-enddo loop as both are viable alternatives. However, the analysisissues that arise are more easily motivated by this line-by-line 
ost-assignment te
hnique.Given the annotated s
ript and the summation expression re
e
ting the 
ost of thes
ript (seen in Se
tion 5.4.3), a few questions arise. The two that relate to the annotationsthemselves are the most easily dispensed with. The Max(Width/Length(Lo
al(obje
t))) issimply a fun
tional programming notation for determining the maximum size of the obje
tin a given dimension over the set of nodes (i.e. how mu
h is held by the node that holds themost). This is done be
ause this maximum tends to be the bottlene
k for the algorithm. These
ond is the \Broad
ast" fun
tion. This 
an be repla
ed \underneath" by any method ofbroad
ast and the analyti
al annotation re
e
ts the 
omplexity of the algorithm employed.The expression re
e
ting the 
ost of the algorithm embodies a number of impli
itassumptions. While these assumptions are not stri
tly enfor
ed in the analysis engine, theyare useful in order to present a simple example. As was mentioned above, the Broad
ast maytake pla
e in a number of ways. Therefore, its 
ost depends on the ma
hine ar
hite
ture andthe manner in whi
h the broad
ast is performed. Here, for simpli
ity, a two-dimensionalmesh is assumed, and the broad
ast pro
eeds via a minimum spanning tree algorithm.While this 
onvention regarding the broad
ast is logi
al and not greatly limiting, the se
ondsimplifying assumption is a bit more restri
tive. In order to present a 
on
ise summaryformula, we have assumed three things:1. That the distribution blo
king size is the same as the algorithmi
 blo
king size.2. That the size of the matrix (n) is an integral multiple of this blo
king size (nb).3. That we have used a blo
k-
y
li
 distribution in both dimensions.In Se
tion 5.6 these restri
tions are relaxed. In su
h 
ases, a

ura
y tends to 
omeat the 
ost of intelligible 
ost expressions.5.4.3 Analyti
al ResultComputing the total time required for the parallel LU fa
torization, TLU(n; r; 
; b) thusrequires us to evaluateTLU(n; r; 
; b) = n=bXi=1 �23b3
 + Tb
ast(b2; 
) + b3dn� ib
b e
 + Tb
ast(b2; r) + b3dn� ibrb e
+ Tb
ast(b2dn� ib
b e; r) + Tb
ast(b2dn� ibrb e; 
)108
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+ 2bdn� ib
b edn� ibrb e
�where b equals blo
k size nb, r and 
 are the row and 
olumn dimensions of a two-dimensionalpro
essor grid, i equals the iteration index, Tb
ast(m; p) equals the 
ost of broad
asting mitems within p pro
essors, and 
 is the 
ost of a 
oating-point operation.While this expression 
an be easily evaluated, given a 
ost estimate for the broad
ast,it is typi
ally useful to have a more 
ompa
t estimate for the 
ost. For example, if one wantedto dynami
ally 
hoose between di�erent implementations, a 
heap estimate of the 
ost mustbe available. Derivation of su
h an estimate is straightforward, but tedious and error-proneif done by hand. Thus, we have 
reated a prototype system employing Mathemati
a that
an take the s
ript input and generate a 
ost estimate that is 
ompa
t in form. However,this estimate may not be of great informative value.5.4.4 The Use ofMathemati
a Module[℄sThus far, the performan
e 
hara
teristi
s have been dis
ussed with little spe
i�
ity aboutwhat the annotations in
lude or what form they take.Sin
e the fo
us of the dis
ussion is limited to imperative languages, su
h as Fortranand C, it seems that the level of the subroutine or pro
edure 
all is 
ertainly the most
onvenient lo
ation in whi
h to pla
e this annotative information. It should be pointedout that fun
tional supply (what the routine furnishes) and performan
e 
hara
teristi
s aretwo separate ideas, but 
an both be viewed as meeting the requirements of a programmer.Further, it is important to note that various language 
onstru
ts (sele
tors, loops, et
.) 
anbe thought of as meta-subroutines. Combining a loop with a routine 
reates a new routinewith di�erent performan
e 
hara
teristi
s; 
hara
teristi
s that are 
al
ulable from the two
omponents involved.5.4.5 Performan
e Estimates: Dis
rete FormulaeDis
rete formulae arise from the analysis of the algorithms under study in this do
ument. As
an be seen in Se
tion 5.4.3, one possible analysis format is the result of summing togetherall of the individual operation 
ounts on a per-loop basis.Why Dis
rete Formulae AriseAll 
ommonly used modern 
omputer ar
hite
tures are dis
rete. It should not be surprisingthat a model of these systems gives rise to dis
rete mathemati
al formulae.Algorithms from the area of linear algebra, 
an also give rise to dis
retized equationswhen one des
ribes their 
omplexity.Problems with this FormatAs we see above, the expression that results is somewhat unintelligible, 
luttered as it is withsummations and 
eiling fun
tions. Su
h results tend to be diÆ
ult to interpret. They are109
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also poor formats for determining performan
e pro�les, espe
ially when many parametersmay be varied simultaneously.5.4.6 Closed-Form ExpressionsWhile dis
rete analysis allows for a

urate modeling, it tends to fall short in presenting theuser with understandable information. Typi
ally, the lexi
ally shorter approximations areworked out by hand. The 
onstants involved are tedious to 
al
ulate for various ma
hinear
hite
tures. In order to do so, it is often the 
ase that a number of simplifying assumptionsare in
orporated. It is sometimes the 
ase that these assumptions have a great impa
t onthe reliability of the resulting formula. It is our goal to design the analysis system so thatthe task is eased and this impa
t is minimized.A Numeri
al (a.k.a. A Statisti
al) TreatmentOf 
ourse, a number of data points from dis
rete analysis 
an be taken as guides for su
hthings as a least squares �t to a fun
tion of a known degree and form. While determiningthis degree is not always simple, it is usually reasonably straightforward be
ause of knownalgorithmi
 
omplexity properties. Using modern tools su
h as Mathemati
a or Matlab, thediÆ
ulty is less in the determination of a line of best �t than in giving meaning to the
oeÆ
ients that des
ribe that line. The 
urrent state of the PLANALYZER system is su
hthat that these equations 
an be generated, but the 
oeÆ
ients have no expli
it 
onne
tionto the parameters of the pro
edure analyzed.Highly Simpli�ed ModelsBe
ause the analyti
al system is symboli
, it is relatively straightforward to generate 
losed-form results by sa
ri�
ing a

ura
y. For example, instead of 
omputing the time taken toperform operation X, the analyti
al engine 
an 
ount the number of times operation Xwould be 
alled and produ
e a result of the form #X. The same idea 
an be used to yield
ounts of di�erent 
ategories of fun
tions, 
ounts of fun
tions that run at some per
entof the pro
essors peak rate, et
. While this form is not what is typi
ally referred to as\
losed," there are 
ases where this might provide more useful information to the developer.For example, if the programmer is attempting to move operations from level-2 to level-3BLAS, it would likely be bene�
ial to determine if various 
hanges to the 
ode were havingthe desired e�e
t. The method outlined above would automate that pro
ess.5.4.7 More Pra
ti
al Con
ernsSome issues only have a pla
e when the dis
ussion is grounded in implementation. Thoseissues are presented, brie
y, here.
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Viewing the Pro
essor SetThere are two ways that one 
an view the pro
essor set when it 
omes to the analysis of analgorithmi
 implementation:� uni�ed and� 
omponent-wiseThe view of the pro
essor set as uni�ed ignores the individual di�eren
es betweenthe pro
essor's work sets as well as any di�eren
e between the 
omponent pro
essors. Thelatter simpli�
ation may be 
onsidered harmless be
ause heterogeneous 
omputer systemsare not 
onsidered in this do
ument be
ause of the 
omplexity that their design in
i
ts onany su
h analysis [13℄.There are a number of approa
hes to uni�ed pro
essor modeling. The approa
hused in the prototype system presented here 
ould be 
alled \single-
ase" based. The PL-ANALYZER determines the best/worst/average 
omplexity during any given step of the
omputation (where a step may be de�ned to any level of granularity) and sums up thesesteps, in whatever manner, to yield the result. Many other approa
hes are possible. Onesu
h approa
h would be interval-based. Su
h a system keeps tra
k of a set of 
ases (e.g.best and worst) and 
al
ulates not a single 
ost, but the interval over whi
h the 
osts mayrange. The approa
h that we sele
ted seemed 
apable of providing the information requiredand is more typi
al of the analyses traditionally seen in the area.The single-
ase based model also appeared to be the most appropriate as our interestwas in 
onstru
ting a proof-of-
on
ept system that addressed the 
omplexity of the 
riti
alpath of the 
ode/ar
hite
ture under 
onsideration. Therefore, modeling those algorithmi
steps that would likely prove bottlene
ks in the exe
ution of the 
ode was the foremost
on
ern. As 
an be seen by studying the results presented in Se
tion 5.6 this strategy
an yield highly a

urate results when many operations are global and involve 
olle
tive
ommuni
ations. In su
h 
ases, determining the steps along the 
riti
al path 
an be donevia the use of a model that la
ks mu
h of the detail that would be required to mirror theunderlying library with total a

ura
y.5.4.8 Load Balan
eThe analysis s
heme should have the ability to deal with load balan
e. This is not to saythat it should do anything about �xing existing load imbalan
es past revealing them to thedesigner.The term \load imbalan
e" is typi
ally taken to mean raw 
omputational imbal-an
e. In other words, di�erent pro
essors have di�erent operation 
ounts. This is a validinterpretation of the term, but the meaning of the term 
an be extended in a number ofways. One of the 
hief sour
es of optimization diÆ
ulties is the insuÆ
ient re�nement ofpro
essor timing di�eren
es. While very high-level abstra
t ma
hine models do not evin
e111
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operation speed di�eren
es, useful ones usually do. Therefore, the analyzer must modelnot only the number of (basi
) operations done, but also the (relative) speed at whi
hthe target ar
hite
ture is 
apable of doing them. This 
an be done by a very detailedmodeling of the underlying ar
hite
ture, spe
i�
ally the memory hierar
hy and timing, orthrough the 
reation of a base set of operators that fa
ilitate the exposure of these timingimbalan
es. The work outlined here takes the latter approa
h; 
hampioning the use of a(
exible) framework so that these di�erent \kernel" rates and 
omplexities may be spe
i�ed.In addition to allowing the proper level of performan
e resolution, the analysis sys-tem requires the ability to re�ne the view of the pro
essors. It is important to note thatthis does not mean that the analyzer must \imitate" the pro
essors in a lo
kstep fashion.As in the 
ase of the kernel 
omplexities, it is important that the design system allow theuser to tune the spe
i�
ity of their input to mat
h the detail level that they require in theanalysis system's output for at least two reasons. First, it requires extra work to providesu

in
t information when the analysis engine is provided with a highly detailed system\map." Se
ond, it is impossible for the analysis to provide highly a

urate feedba
k if theinformation provided is at too high a level. The latter is not surprising, but it is importantthat the former be pointed out be
ause it often takes 
omputational and programing e�ortfor an automated analysis tool to disregard information provided to it.5.5 Related WorkMany of the papers in this area are almost ex
lusively empiri
al in their treatment of thepresented algorithm(s) [33℄. Su
h work presents an algorithm then dis
usses various issuesthat revolve around a 
oded instan
e of the algorithm under 
onsideration along with somereal-world experimental (timing) results. Often, work that is more s
holarly dis
usses thepresented algorithms in terms of su
h things as 
omplexity measures. These are oftenfollowed by empiri
al results as \proof" of the 
orre
tness of the more abstra
t resultantformulae [24, 70, 31, 53℄.5.5.1 Monolithi
 AnalysisThe analysis of individual routines is often done in something of a va
uum. Usually, thisapproa
h is taken when one's goal in analyzing an algorithm is to obtain maximum a

ura
y.By viewing the algorithm under 
onsideration as a unit, all of the 
omputational issues 
anbe ta
kled in order to yield an a

urate re
e
tion of the performan
e of the algorithm. Thedownside of this approa
h is that it gives little leverage for ta
kling the next analysis task.5.5.2 Ad-ho
/Component Sums Based AnalysisAt the opposite end of the spe
trum is the 
omponent-sums approa
h to analysis. Thisapproa
h simply glues together the results of the analysis of the pie
es 
omprising theoverall algorithm. This allows for the rapid synthesis of analyti
al 
omponents, but themanner in whi
h these 
omponents intera
t is not modeled and often diÆ
ult to determine.112
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5.6 Experimental ResultsIn Se
tion 4.4, a number of variants and versions of the LU fa
torization algorithm werepresented along with a dis
ussion regarding the 
ode generated by the PLANALYZER. Inthis se
tion, the same intermediate-language form that is translated into C 
ode is insteadtransformed into a form of 
ode that serves to model the performan
e 
hara
teristi
s of theresultant program as it exe
utes on the target ar
hite
ture.5.6.1 Automated Analysis GenerationThe analysis presented in this experimental se
tion is numeri
, not symboli
, in nature,as it would require a good deal of analysis e�ort on the part of the author to determinewhether the analysis was 
orre
t in the latter 
ase. In order to evaluate the a

ura
y of theperforman
e estimates generated by the analysis engine, it was most expedient to 
omparethe numeri
al estimates generated with the witnessed empiri
al performan
e on the targetar
hite
ture.In essen
e, the analyti
al engine works by exe
uting the analysis s
ripts that aregenerated along with the exe
utable 
ode. The performan
e estimates for the leaves of thePFLAMBE software ar
hite
ture were the result of a great deal of experien
e with the 
ode-generation system and the 
omputational environment under study, but were not as pre
iseas ben
hmarks would have been. However, this level of detail would allow for a more rapidalteration of the analysis engine so as to produ
e symboli
 results, so was left as is. As we
an see in the next subse
tion, the estimates a

urately re
e
t the performan
e of smallerproblems as well as illustrating performan
e trends for ea
h of the 
ases examined.5.6.2 Analysis vs. Witnessed Performan
eIn all 
ases of 
omparison between estimated and witnessed performan
e in
luded here, testswere performed on an 80 node Cray T3E (lonestar.hp
.utexas.edu). While the algorithmswould have run on non-square 
omputational grids, only square grids of sizes 2� 2, 4� 4,and 8� 8 were tested. The same tests were performed in all 
ases with a few provisos. Theglobal size of the (square) matri
es tested ranged from order 32 to order: 4096, 8192, and16384 for the 4, 16, and 64 node 
ases, respe
tively. However, due to resour
e limitations,some of the 
omputationally ineÆ
ient algorithms were not tested with the largest matrixsizes. The analyti
al system would have predi
ted the timeouts that o

urred (one is givena maximal allotted time when one submits a job to the T3E), but it was not used for thispurpose.First, let us examine the predi
ted and witnessed performan
e of the �ve variantslisted in Se
tion 4.4. These results are depi
ted in line-graph form in Figure 5.6, Figure 5.8,and Figure 5.10 and in bar 
hart form in Figure 5.7, Figure 5.9, and Figure 5.11. The shadeof the bar indi
ates the quality of the estimation, with bla
k being used if the estimates aremore than 20% o�, gray for 10%-20% o� and white for an error of less than 10%.113
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Figure 5.6: Ratio of predi
ted to a
hieved performan
e: 4 node Cray T3E

Figure 5.7: Bar graph indi
ating ratio of predi
ted to a
hieved performan
e for 4 node CrayT3E. From left-to-right the bars 
orrespond to the Eager, Lazy, Row Lazy, Column Lazy,and Row-Column Lazy implementations. 114
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Figure 5.8: Ratio of predi
ted to a
hieved performan
e: 16 node Cray T3E

Figure 5.9: Bar graph indi
ating ratio of predi
ted to a
hieved performan
e for 16 nodeCray T3E. From left-to-right the bars 
orrespond to the Eager, Lazy, Row Lazy, ColumnLazy, and Row-Column Lazy implementations.115
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Figure 5.10: Ratio of predi
ted to a
hieved performan
e: 64 node Cray T3E

Figure 5.11: Bar graph indi
ating ratio of predi
ted to a
hieved performan
e for 64 nodeCray T3E. From left-to-right the bars 
orrespond to the Eager, Lazy, Row Lazy, ColumnLazy, and Row-Column Lazy implementations.116
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Now, we review the graphs 
orresponding to the ratios of predi
ted/a
hieved per-forman
e for the four building-blo
k algorithms (eager1, eager2, eager4, and eager5) andexamine the same information regarding those routines that utilize these 
omponents (ea-ger3a, eager3b, eager6a, eager6b, and eager6
).Figure 5.12, Figure 5.13, and Figure 5.14) indi
ate the performan
e of the building-blo
ks des
ribed in Se
tion 4.4, while Figure 5.15, Figure 5.16, and Figure 5.17 utilize thesebuilding blo
ks as their sub
omponent LU fa
torization.

Figure 5.12: Building blo
ks algorithms. Ratio of predi
ted to a
hieved performan
e: 4node Cray T3E5.6.3 Experiments: A SummaryThe studies in this 
hapter were intended to demonstrate the utility of FLAME as a methodin the 
ontext of the entire environment. While Se
tion 2.8.3 gave eviden
e that supportedFLAME's usefulness as both a pra
ti
al and pedagogi
al tool, the results given here areintended to lend support to the idea that mu
h of the FLAME method 
an be automatedand that su
h me
hanization would prove useful.This 
hapter also supplied eviden
e supporting the soundness of the 
on
epts behindthe PLANALYZER. The automated part of the system proved 
apable of:1. Creating many 
ode instan
es from the same s
ript input.2. Generating 
ode instan
es that utilized hand-made s
ript spe
ializations.3. A

urately determining the performan
e 
hara
teristi
s of a number of 
ode instanti-ations. 117
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Figure 5.13: Building blo
ks algorithms. Ratio of predi
ted to a
hieved performan
e: 16node Cray T3E

Figure 5.14: Building blo
ks algorithms. Ratio of predi
ted to a
hieved performan
e: 64node Cray T3E 118
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Figure 5.15: Algorithms utilizing building blo
ks. Ratio of predi
ted to a
hieved perfor-man
e: 4 node Cray T3E

Figure 5.16: Algorithms utilizing building blo
ks. Ratio of predi
ted to a
hieved perfor-man
e: 16 node Cray T3E 119
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Figure 5.17: Algorithms utilizing building blo
ks. Ratio of predi
ted to a
hieved perfor-man
e: 64 node Cray T3E4. Using this information to hybridize a set of variants and/or version to a
hieve superiorperforman
e.As these three goals are important when one is 
onstru
ting s
ienti�
 libraries, wethink that the prototype holds up well as a proof-of-
on
ept. Within the PLANALYZER,the performan
e models 
ould be re�ned to give results that are more a

urate or extendedto give results that are more meaningful.5.7 Chapter SummaryAs has already been dis
ussed in this 
hapter, performan
e is usually a sought after 
hara
-teristi
 in linear algebra 
odes. In the 
ase of library 
odes, this quality is even more highlyprized be
ause performan
e is far more important in the 
ase of an often-invoked routinethan in the 
ase of a routine that is exe
uted only a few times.Of 
ourse, while the typi
al measure of performan
e is speed (i.e. the length of timethe routine requires in order to exe
ute), there are often other 
on
erns. In some 
ases itis not just desirable, but vital to have a small memory footprint. Sin
e there are manyother axes by whi
h \quality" 
an be measured, the tools should be 
apable of handling anassortment of metri
s. Be
ause of the details of implementation, this work 
an be extendedto handle su
h things. Further, the uni�ed nature of the development system fa
ilitatesrapid revision and spe
ialized optimizations.120
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Chapter 6Con
lusionGiven a limited amount of time and/or a language that is not domain-spe
i�
 and in
exible,it is often the 
ase that one has to settle for the realization of less ambitious algorithms,little or no hybridization, one-of-ea
h routines (i.e. a monolithi
 software stru
ture), anddeal with problems in 
ross-platform transportability.There are time and �nan
ial penalties involved when one utilizes ineÆ
ient 
ode.Often, there is a potential trade-o�; greater resour
es 
an be devoted to a problem in orderto bolster the short
omings of the 
omputational system. These 
an be in the form of humanor ma
hine resour
es. However, trade-o�s are sometimes unavailable and are often 
ostly.In this dissertation, we present eviden
e that it is possible to 
reate a developmentsystem that helps one in dealing with these problems. In this 
hapter, we present, by topi
,the problems addressed and lessened by the approa
h and implementation des
ribed here.6.1 Design: FLAMEWhile it is the only step in the development pro
ess that is not automated, the design phaseis the 
ore of the system. By deriving algorithms in a systemati
 manner and expressingthem in a regimented form, we have the basis for automating the rest of the system. Thismethodology and the relatively uniform nature of the resultant algorithmi
 depi
tions fa-
ilitate the generation of multiple routines with the same fun
tionality and, therefore, aneasier path to su
h things as algorithmi
 hybridization.Similarly, targeting spe
i�
 levels of a 
omputational system by applying small mod-i�
ations to a uniform approa
h allows for verti
al integration. It fa
ilitates analysis sin
esimilar annotations are appli
able to similar routines throughout the hierar
hy. Exampleareas where this methodology has shown its eÆ
a
y range from the bottom of the memorypyramid with ITXGEMM, through PFLAMBE, to the top, POOCLAPACK, a parallel,distributed, out-of-
ore library.One example of an area where FLAME might prove useful in the future involves theuse of re
ursive data stru
tures for storing matri
es [48, 4, 46, 49℄. By storing matri
es by121
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blo
ks rather than row- or 
olumn-major ordering, data reuse in 
a
hes 
an be enhan
ed.By 
ombining this with re
ursive algorithms that exploit this data stru
ture, impressiveperforman
e improvements have been demonstrated. Re
ently, work at IBM's T.J. Watsonresear
h 
enter and The University of Umea have shown the utility of a spe
i�
 type ofhierar
hi
al des
riptor/storage format for matri
es, namely re
ursive stru
tures that gohand-in-hand with re
ursive algorithms [29, 46℄.The 
rux of the design philosophy, as it relates to performan
e is that there are twoimportant 
hara
teristi
s of modern, parallel 
omputers: 
omputation and 
ommuni
ation.Virtually, all performan
e gains o

ur in the optimization of a 
omputational or a 
ommu-ni
ation routine when we view things \in the small." In a library built upon routines thatultimately rely on a very small matrix-matrix multiply kernel, virtually all of the speed-upstems from 
areful memory subsystem management. When 
onsidering an out-of-
ore li-brary, there are more layers of memory to manage and the FLAME philosophy has been agreat aid in the 
onstru
tion of su
h libraries.Many aspe
ts of the derivational approa
h we have des
ribed are systemati
: thegeneration of the loop-invariants, the derivation of the algorithm as well as the translationto 
ode. However, while we have mu
h eviden
e to suggest that me
hanizing the pro
ess isa
hievable, there is mu
h work ahead.We have demonstrated that the system presented in this do
ument ful�lls its po-tential by dis
ussing how the te
hnique has been applied to di�erent 
omputational envi-ronments.6.2 Language: PLAWrightThe end-user, using FLAME, should be able to en
ode algorithms rapidly, while introdu
ingfew errors. Both of these issues are addressed by having a programming language thatis synta
ti
ally similar to the language of design. If the designer and the programmerare one and the same, this \proximity" is useful be
ause it minimizes the possibility of amistranslation between the two forms of the algorithm. If the implementor and designer aretwo distin
t entities, this resemblan
e of form has an additional advantage, namely, lesseningthe likelihood of a misinterpretation of the design before it is translated into input for thesystem.En
apsulated, the bene�ts of the PLAWright programming language are:1. It 
losely resembles the language of the algorithms.2. It 
an be written at a very high level or at a lower level.3. The transition from general to spe
ialized is both smooth and 
exible.4. It 
an be des
ribed using typi
al 
ompiler formalizations.
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6.3 Automated Code Generation: PLANalyzerTypi
ally, the 
onstru
tion of a linear algebra library requires the implementation of a largenumber of algorithms. The derivation pro
ess advan
ed in this work is appli
able to thosealgorithms at the 
ore of dense linear algebra, exhibits a systemati
 nature that lends itselfto rapid derivation, and produ
es algorithms in a form that 
an be me
hani
ally translatedinto input for the PLANALYZER 
ode produ
tion tool. Similarly, the 
ode manufa
turingsystem 
an address the same spe
trum of algorithms as the derivation system, is me
hani
al,and is relatively fast. Therefore, algorithmi
 
overage 
an be qui
kly a
hieved by one familiarwith the derivation methodology.In the best of all possible worlds, the automati
ally generated 
ode would also beprovably 
orre
t. Given the formal approa
h provided by FLAME and the nature of the
ode generation fa
ilities presented in Chapter 4 of this dissertation, we think that this ispossible for the domain-spe
i�
 language presented in Chapter 3.A domain-spe
i�
 language provides a set of high-level operations that are 
onve-nient for a spe
i�
 domain. If we formalize the syntax and semanti
s of a domain-spe
i�
language, then we 
an use formal methods to prove that a program written in a domain-spe
i�
 language is 
orre
t. That the implementation of the domain-spe
i�
 language is
orre
t is an orthogonal issue, related to low-level 
ompiler veri�
ation, and ably handledby others.Towards this end, a 
ollaborative e�ort with Dr. Panagiotis Manolios targets thefollowing:1. Proving that for any PLAWright 
ode, the PLANALYZER's output is a legal PLA-PACK program with the same semanti
s as that of the input s
ript.2. Applying ta
ti
-based theorem proving to 
onstru
t a system that utilizes both theinput and output of the integrated PLANALYZER system and, on a per instan
ebasis, 
reates proofs of 
orre
tness.6.4 Automated Analysis: plANALYZERPerforman
e is one of the paramount 
on
erns in the area of linear algebra library 
onstru
-tion. There are three interrelated fa
ets of this issue that need to be dealt with: modeling theenvironment, evaluating the performan
e estimates, and using the result of the evaluation.All three issues have been dealt with by the system des
ribed in this dissertation.It is rarely the 
ase that the 
ode that a
hieves optimal performan
e on one ar
hi-te
ture will perform as admirably on another. It is therefore a 
ommon goal to have 
odethat is performan
e portable a
ross various systems. The work presented here in
ludes theuse of a high-level language in 
onjun
tion with analysis te
hnology. This fa
ilitates theprodu
tion of performan
e transportable 
ode.
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6.5 An Integrated System: FLAME and PLANALYZERTo 
onstru
t a linear algebra library one must design and implement the algorithms thatmust be available to the library user and make them as eÆ
ient as possible. FLAMEprovides a systemati
 means for deriving the variants of su
h algorithms. The PLAWright
ompiler allows for rapid prototyping. Automati
 generation of the 
ode 
orresponding tothe PLAWright s
ript is handled by the 
ompiler (PLAN) 
omponent of the PLANALYZER.Finally, the analyti
al (ANALYZER) 
omponent of the system yields information regardingthe performan
e 
hara
teristi
s of the produ
ed 
ode, opening the door for hybridization.We have explored the development of all of the 
on
epts and tools ne
essary for amethodi
al hybridization of a linear algebra library and believe that we have made a strong
ase for the soundness of the approa
h presented in this dissertation.
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