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AbstratOver the last two deades, muh progress has been made in the area of the high-performane sequential and parallel implementation of dense linear algebra operations. Atwhat time an we on�dently state that we truly understand this problem area and whatform might evidene in support of this assertion take? It is our thesis that if we fous thisquestion on the software arhiteture of libraries for dense linear algebra operations, we anlaim to have reahed the point where, for a restrited lass of problems, we understandthis area. In this dissertation, we provide evidene in support of this assertion by outlininga systemati and partially automated approah to the derivation and high-performaneimplementation of a large lass of dense linear algebra operations.We have arrived at a onlusion that the answer is to apply formal derivation teh-niques from Computing Siene to the development of high-performane linear algebra li-braries. The resulting approah has resulted in an aesthetially pleasing, oherent ode thatfailitates performane analysis, intelligent modularity, and the enforement of program or-retness via assertions. In this dissertation, we illustrate this observation by looking at thedevelopment of the Formal Linear Algebra Methods Environment (FLAME) for implement-ing linear algebra algorithms.We believe that traditional methods of implementation do not reet the naturalmanner in whih an algorithm is either lassi�ed or derived. To remedy this disrepany,we propose the use of a small set of abstrations that an be used to design and implementlinear algebra algorithms in a simple and straightforward manner. These abstrations maybe expressed in a sript language that an be ompiled into eÆient exeutable ode. Weextend this approah to parallel implementations without adding substantial omplexity.It should also be possible to translate these sripts into analytial equations thatreet their performane pro�les. These pro�les may allow software designers to systemat-ially optimize their algorithms for a given mahine or to meet a partiular resoure goal.Given the more systemati approah to deriving and implementing algorithms that is faili-tated by better abstration and lassi�ation tehniques, this sort of analysis an be shownto be systematially derivable and automated.
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Chapter 1IntrodutionOur laim is that it is possible to reate a system wherein one an ode dense linear algebraroutines in a very high-level, domain-spei� language and still attain near-peak perfor-mane on distributed-memory parallel arhitetures. This dissertation provides evidenesupporting this laim and desribes the impliations of suh a system. Our thesis an beexpressed as follows:� We have disovered how to systematially derive a restrited lass of linear algebraalgorithms using formal derivation tehniques.� For this lass of algorithms, ompiler tools an be employed to redue a domain-spei�program to a list of operational requirements.� In this domain, requirements an be paired to the funtionality provided by a set oflibrary routines if the annotations used to express those servies are ompatible withthe requirements.� For this lass of algorithms, performane estimates of onstruted routines an bemade highly aurate if the underlying library is layered orretly and the languageused to desribe performane harateristis is suitably exible.The domain under study in this dissertation is restrited to a subset of dense linearalgebra problems. This lass inludes the level-3 BLAS routines [25, 39℄, matrix fatorizationroutines [44℄, and kernels involved in ontrol theory [65, 64℄. While this set of algorithmsdoes not over the gamut of dense linear algebra, it does omprise a useful, ore set.This hapter begins with an historial overview that summarizes the evolution oflinear algebra software libraries. This is followed by a brief treatment of the insights that ledus to the work presented here. We then explain how this work advanes the state-of-the-art.After itemizing the ontributions of our researh, we present a summary of other researhe�orts whose goals are similar to our own. The �nal setion of this hapter presents anoutline of the dissertation. 1
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1.1 MotivationAdvanes in software engineering for sienti� appliations have often been led by teh-niques developed for libraries for dense linear algebra operations. The �rst suh pakageto ahieve widespread use and to embody new tehniques in software engineering was EIS-PACK [68℄. The mid-1970s witnessed the introdution of the Basi Linear Algebra Subpro-grams (BLAS) [55℄. This version of the BLAS was a set of vetor operations (now known aslevel-1 BLAS) that allowed libraries to attain high performane on omputers possessing aat memory while remaining portable between platforms. This library and its well-de�nedinterfae simultaneously enhaned ode modularity and readability. The �rst suessfullibrary to exploit these BLAS was LINPACK [22℄.By the late 1980s, it was reognized that in order to overome the gap between pro-essor and memory performane on modern miroproessors it was neessary to reformulatematrix operations in terms of level-2 (matrix-vetor multipliation) and level-3 (matrix-matrix multipliation-like) BLAS operations [26, 25℄. First released in the early 1990s,LAPACK [5℄ is a high-performane pakage for linear algebra operations. LAPACK is aportable library that provides a funtionality that is a superset of both LINPACK and EIS-PACK. The LAPACK library heavily utilizes the level-3 BLAS and evines high performaneon essentially all sequential and shared-memory arhitetures.A major simpli�ation in the implementation of the level-3 BLAS stemmed fromthe observation that they an be ast in terms of optimized matrix-matrix multipliation [1,47, 52℄. The performane of the resulting libraries was omparable to that of the optimized,assembly-oded, vendor-supplied BLAS in many ases. Further, the implementations weremore portable than previous BLAS libraries beause they were written in Fortran. In thoseases where the ode was not performane transportable (i.e. where these BLAS did notompile into eÆient assembly ode), the ideas behind this researh simpli�ed the task ofhand-oding the level-3 BLAS library.With the advent of distributed-memory parallel arhitetures, LAPACK was nolonger suÆient for the needs of high-performane sienti� omputing. LAPACK workedwell with high-performane shared-memory systems, but was not written to be ompatiblewith distributed-memory arhitetures. Distributed-memory arhitetures depend upon theappliations and libraries to expliitly manage the physially distint memories attahed tothe omputational proessors (nodes) of the system. Thus, a parallel version of LAPACK,SaLAPACK [15℄, was developed. A major design goal of the SaLAPACK projet was topreserve and re-use as muh ode from LAPACK as possible. Thus, all layers in the SaLA-PACK software arhiteture were designed to resemble analogous layers in the LAPACKsoftware arhiteture. This deision was motivated by the fat that LAPACK had provenitself both robust and eÆient. However, this deision ompliated the implementation ofSaLAPACK. The introdution of data distribution aross memories reated a omplia-tion analogous to that of reating and maintaining the data strutures required for storingsparse matries. The mapping from indies to matrix element(s) was no longer a simpleone. Combining this ompliation with the monolithi struture of the software led to ode2
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that was laborious to onstrut and diÆult to maintain.Reently, a number of projets have developed software for generating automati-ally tuned matrix-matrix multipliation kernels. These undertakings inlude the PHiPACprojet [11℄ and the ATLAS projet [76℄.The PHiPAC researh e�ort inluded a areful analysis of C implementations ofmatrix-matrix multipliation. By struturing the loops and memory referenes arefully,it is possible for a C ompiler to generate highly eÆient ode for this algorithm. ThePHiPAC researh team produed a software system apable of generating eÆient BLASkernels through a generate-and-test strategy. This software generator reated implemen-tations of matrix multipliation algorithms that bloked matries in every reasonable way.By exeuting these programs and monitoring the resulting performane, parameters for ahigh-performane matrix multipliation implementation ould be determined.The ATLAS projet repakaged and simpli�ed the methods developed in reatingthe PHiPAC system. In addition, the ATLAS system required less time to generate eÆientlinear algebra kernels. This eÆieny was gained by avoiding PHiPAC's exhaustive searh ofthe parameter spae involved in determining optimal matrix bloking sizes. Unfortunately,as this searh spae was redued through experiene, not by a theoretial model, it issometimes the ase that ATLAS produes ode with far less than optimal performaneharateristis [42℄.1.2 Our Approah1.2.1 Reent InsightsThe primary inspiration for muh of the work presented in this dissertation ame from ourexperiene with the Parallel Linear Algebra Pakage (PLAPACK) [74℄. PLAPACK ahievesa funtionality similar to that of SaLAPACK, targeting the same distributed-memory ar-hitetures. In ontrast to SaLAPACK, PLAPACK uses an MPI-like [38℄ approah to hideindexing and data distribution details.Work related to PLAPACK provided insights that motivated the approah presentedin Chapter 2 and Chapter 3 of this doument. Raising the level of abstration at whih oneodes redues the e�ort involved in implementing high-performane linear algebra libraryroutines.As we gained more experiene with PLAPACK, a number of themes kept reappear-ing:� The derivation of algorithms for di�erent linear algebra operations was systemati.� Similarly, the analysis of the resulting algorithms was systemati, although tediousand error-prone.� For a given linear algebra operation, di�erent algorithms provided better performaneas the sizes of operands (matries) hanged [40℄. This makes analysis neessary in orderto be able to determine when and understand why di�erent algorithms are superior.3
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We disovered that, in deriving algorithms for a new operation, we were applying formalderivation methods to the domain of algorithms for dense linear algebra operations. Thisled to our work on the Formal Linear Algebra Methods Environment (FLAME), researhdetailed in Chapter 2.Linear algebra libraries are expeted to ontain routines that an deal with a broadrange of operational tasks and to be written in a form that an be ported between di�erentomputational environments. The LAPACK library ahieves both objetives by exploitingthe BLAS. However, the use of libraries suh as LAPACK has the disadvantages of requiringthe appliations programmer to perform time-onsuming, involved, soure ode optimiza-tions that are often not performane portable [50℄. The work presented in Chapter 3 andChapter 4 addresses this problem. By reating a language that allows the user to programat a level of abstration higher than that of PLAPACK, little library knowledge is requiredof the programmer. An automated ode generation system aepts programs written inthis language and produes ode that evines superior performane on distributed-memory,parallel superomputers. This is ahieved by mehanially linking the high-level programsto a funtionally-annotated version of the PLAPACK library.A simple model of a distributed-memory parallel system is used for performaneanalysis in Chapter 5. This model reets lessons learned while studying the issues relatedto the reation of high-performane matrix-matrix multipliation kernels for single proessormahines with hierarhial memories [42℄. This ontrasts with ode generation e�orts suhas PHiPAC and ATLAS, whih employ brute fore to searh a parameter spae for blokingsizes that aommodate multiple levels of memory hierarhy.Together, these experienes and insights led us to onlude that for a subset of denselinear algebra operations, the derivation, implementation, and analysis of parallel algorithmsis now a well-understood and systemati proess.1.2.2 A Solution: The Big PitureThe goal of linear algebra ode prodution is to generate eÆient ode from a lear state-ment of mathematial requirements. Our strategy for ahieving this objetive is depitedin Figure 1.1. Spei�ally, it is our aim to replae the \Human Expert" of Figure 1.2,whih reets where previous researh had led us, with systemati tehniques and auto-mated tools. The term \eÆient" overs a number of sub-goals inluding reliability, speed,and transportability. These qualities are widely onsidered the primary value metris ofsuh omputer odes. This dissertation targets the ommunity of sienti� library writers.Sine one might safely suppose that these researhers are mathematiians or have strongmathematial bakgrounds, the lear statement of mathematial requirements is a logialstarting point. The mathematial spei�ation of the problem must be known in order togenerate ode to solve that problem. In order to automate a system, this spei�ation,represented by \A = LU" in Figure 1.1, must be made expliit.The uni�ed approah to the design and development of dense linear algebra algo-rithms that is presented in this doument should be distinguished from the situation whereindevelopment is ad ho. When the development and tool sets are olleted, not designed as4
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Figure 1.1: The Big Piture: As advaned in this dissertationpart of a holisti approah, they may supply as muh baggage as leverage to a problem-solving environment.Development MethodologyGiven a mathematial spei�ation of the problem, it is bene�ial to have a onsistent,methodologial approah that enables one to onstrut an algorithm that satis�es this spe-i�ation. If the approah is broadly appliable, it an be employed in the reation of theentire range of routines for a linear algebra library. If this methodology is systemati, it maybe automated. In this dissertation, we present one suh approah. FLAME is systemati innature. In addition, FLAME an be utilized to generate a number of di�erent algorithms,alled variants, for the same mathematial problem spei�ation.Library Management: A ComposerOne may reate a number of variants orresponding to the same mathematial spei�ation.In order to automate ode generation, is useful to link together omponents that satisfy thesame mathematial spei�ation. In the work presented here, they are linked through anno-tations that expose the similarities in their funtionality. This is the task of the \Composer."5
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Figure 1.2: The Big Piture: As our researh group has viewed it.Input to the Composer is written in a high-level sript language alled PLAWright1. Sriptsontain both an algorithmi omponent and the mathematial spei�ation satis�ed by thatsript. By annotating the sripts in this manner, the system an interhangeably use thosesripts with the same funtional harateristis.It is a widely held belief that any automated system should allow for expert in-tervention. PLAWright, the language of the Composer, allows for hands-on modi�ations.These speializations take the form of suh things as data distribution diretives (in theontext of parallel arhitetures), funtional overrides (foring the use a spei� library allor ode segment), and performane annotations (indiating the omputational omplexityof a omponent). In this dissertation, these speialized forms of a given variant are referredto as sript versions. There is a single \vanilla," or plain, sript orresponding to a variantonstruted via FLAME, but there may be many speialized versions of that variant.Code Generation and AnalysisSine the goal of the proess under onsideration involves the prodution of eÆient ode,we ouple the ode produed to an analysis proedure. By restriting our attention to theonstrution of ode built on top of an existing library, the reation of suh an analytial1We would like to thank Sam Guyer for both the PLAWright name and a prototypial example of thelanguage. 6
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engine beomes a more preisely de�ned task.Given a single sript and a software library, there may be many ways to ful�ll therequirements of the sript with the servies provided by the omponent library routines.It is often the ase that di�erent ode instantiations exhibit di�erent omputational har-ateristis. It is also often true that no one routine is best for all situations. Di�eringoperand dimensionalities and harateristis may make it neessary to dynamially seletfrom many di�erent routines in order to attain onsistently near-optimal performane. Thisis alled ode hybridization. It makes sense to ouple ode generation and analysis in orderto enable the prodution of hybridized ode that is eÆient aross a wide range of probleminstanes. This dissertation work presents the PLANALYZER, a oupled ode-produtionand ode-analysis system.The proof-of-onept implementation desribed in this dissertation limits the algo-rithmi area to a subset of dense linear algebra, the omplexity measures to time, and theoutput language to C. However, this system an be extended to involve other omplexitymeasures (suh as memory usage) or to target other languages (suh as Fortran).1.3 Researh Contributions1.3.1 Systematizing DevelopmentWe have made systemati the derivation of a lass of linear algebra algorithms through theuse of simple formal derivation tehniques. This advanes the state-of-the-art by bringingformal derivation tehniques to an area of software arhiteture that has made little use ofthem in the past. Our methodology is referred to as FLAME. Further, we have reated aregimented struture for the expression of FLAME algorithms. This struture makes expliitthe similarities and di�erenes between losely related algorithmi variants. We have oupledthis with the Formal Linear Algebra Methods Building Environment (FLAMBE)2, whihallows one to enode the routines in a form that mirrors the resultant FLAME algorithms.FLAMBE ode an handle matrix omputations on both serial and parallel ma-hines, with porting requiring only minor modi�ations. Thus, our work eases e�orts re-quired to onstrut a library that ontains routines that share funtionality, but addressdi�erent levels of the memory hierarhy. This ategory of vertially integrated library isuseful in high-performane, distributed-memory parallel omputing.1.3.2 Domain-Spei� LanguagesWe have re�ned a domain spei� language, alled PLAWright, for the expression of denselinear algebra subroutines. We have also veri�ed that algorithms expressed in this languagean be ompiled into ode that exeutes on a parallel mahine and into analytial ode thatreets the omplexity of the orresponding exeutable. Additionally, we have reated aframework within whih impliit assumptions regarding linear algebra algorithms are made2This library has been referred to as FLAME in other doumentation [41, 44℄.7
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expliit. Through PLAWright, we have reated a language that allows for rapid prototypingand optimization, improving upon languages suh as PLAPACK and MATLAB by raisingthe level of abstration without sari�ing performane.1.3.3 Automated Code and Analysis GenerationWe have onstruted an analytial model for homogeneous parallel omputers that is simple,preise enough to meet our requirements, and appliable to modern miroproessors om-monly used in the area of high-performane sienti� omputation. This modeling e�ortprovided us with many insights into the design of a performane modeling language.Our system allows an individual, who either laks expert knowledge regarding thetarget arhiteture or the underlying libraries, to produe routines with admirable perfor-mane harateristis. The system we have reated aomplishes this by utilizing expertknowledge, in the form of funtional annotations, to onstrut a number of omparableprograms from a single input sript. In addition, this system is apable of analyzing theperformane harateristis of these implementations in order to failitate the seletion of thebest ode available from the produed alternatives. Utilizing an analytial model representsan approah orthogonal to that of ode generators suh as PHiPAC and ATLAS.1.4 Related Work: Integrated SystemsBelow is a disussion of work related to \integrated systems" with goals similar to thoseaddressed by the work in this dissertation. In subsequent hapters, the \Related Work"setions inlude researh e�orts that address the more narrow topi of that hapter.1.4.1 MultiMATLABThe MultiMATLAB projet attempted to take advantage of a large existing ode base andan integrated development environment [72℄. The philosophy of the projet was analogousto that underlying the SaLAPACK projet [15℄. MultiMATLAB an utilize a number ofMATLAB proesses running on a set of proessors. When oupled with a ommuniationslibrary, this enabled a parallel sripting environment. In this environment, a programmeran exeute a sript on the master proessor and utilize the omputational power of all ofthe proessors in the system.In ontrast to MultiMATLAB, the system presented in this dissertation addressesthe entire development proess, from algorithmi development to ode generation and anal-ysis. Further, using our system results in ode that exhibits admirable performane hara-teristis when exeuted on a distributed-memory, parallel superomputer.
8
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1.4.2 PSIThe PLAPACK-Server Interfae (PSI) projet [59℄ used an approah similar to that ofMultiMATLAB3. Built on the PLAPACK library, the PSI pakage allows one to run sripts,written in MATLAB [58℄, Mathematia [77℄, or HiQ [17℄, on the master proessor. Thesesripts an use the PLAPACK library to handle the requisite parallel omputations whilethe system retains the ability to utilize the indiated omputational environment in the asethat:� PLAPACK does not supply the desired funtionality and� The problem an �t on a single node.Both MultiMATLAB and PSI allow the user to take advantage of the built-in graph-is apabilities of the indiated ommerial systems. The di�erene being that PSI an usethe graphis apabilities of a single node while MultiMATLAB has the ability to utilizethese graphis apabilities on all partiipating proessors.In ontrast to PSI, our system allows the user to program at a level of abstrationthat lies above that of the PLAPACK library. Further, unlike PSI, the researh presentedin this doument inludes algorithmi development and performane analysis.1.4.3 FALCONIn sharp ontrast to MultiMATLAB, the FALCON projet [20, 57, 19℄ resulted in a sys-tem apable of ompiling MATLAB ode into an eÆient parallel exeutable. It mightappear that a large part of the work underlying the FALCON system was made obsolete bythe ompiler now available from the ompany that reated MATLAB, The MathWorksTM.However, this may not be the ase. Parallel performane results are easy to get for theFALCON system while omparable �gures for MultiMATLAB [63℄ are diÆult to loate.However, it may be that the MultiMATLAB projet is far more interested in exibility thaneÆieny.Unlike the FALCON projet, our work addresses algorithmi development and, thus,presents an end-to-end development methodology.1.4.4 BroadwayThe Broadway Projet at UT Austin is an e�ort to automatially optimize both software li-braries and the appliations that utilize them [51, 50℄. This two-pronged approah is slightlydi�erent from the work presented in this dissertation. Broadway is primarily aimed at im-proving upon existing routines whereas the researh thrust of this dissertation drops bak tothe reation of the algorithms and the use of a new language. Further, Broadway an be ap-plied to libraries that do not involve sienti� omputation, whereas the PLANALYZER (seeChapters 3{5) is tied to that domain. Finally, our researh takes a quantitative approah3A tati �rst utilized by STAR/MPI [16℄. 9
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to the analysis and optimization of algorithms while Broadway's approah is qualitative innature, as be�ts a more wide-ranging tool.1.5 Overview of DissertationThis overview is intended to serve to remind the reader of the omponents under study inthis dissertation researh. Eah omponent builds upon the last, but no suessor in thedevelopment proess is entirely dependent upon its predeessor. The result is a system thathas a \best of both worlds" avor; the tools failitate, but are not responsible for enabling,the next step in the proess of development. The design methodology (FLAME) provides theunderlying struture and philosophy for the rest of the system. The employment of FLAMEresults in algorithms of a spei� struture. The next step in the proess is the Composer,whih utilizes the PLAWright language. The Composer aepts algorithms evining thisstruture as input and may be used to speialize them before library linkage is performed.At that point, the PLANALYZER system is used to generate ode and oupled analysisformulae through the use of an annotated library. Finally, the results of the PLANALYZERsystem an be used to reate hybridized ode.1.5.1 Design: FLAME (Chapter 2)The Formal Linear Algebra Methods Environment is a methodology that failitates thesystemati and formal derivation of dense linear algebra algorithms.The FLAME methodology is built upon the use of loop invariants, a fundamentaltehnique of omputer siene. While it is no surprise that this sort of methodology resultsin provably orret algorithms, the tehnique also allows for the reation of novel algorithms.There are many other bene�ts to this approah, and those are detailed in Chapter 2.The systemati nature by whih algorithms are derived with the FLAME philosophyis a strong indiator that this derivation proess an be automated. Although suh automa-tion is not a part of the researh presented in this dissertation, some evidene is o�ered insupport of the assertion that FLAME an be partially mehanized. Mehanization of thisstep would result in an end-to-end, mehanized system for the reation of linear algebralibraries.1.5.2 A Domain-Spei� Language: PLAWright (Chapter 3)Intimately tied to the derivation of the algorithms is the language in whih one expressesthe resulting artifat. An e�ort was made to allow the language of the algorithms to bevirtually idential to the language of their implementation. FLAMBE is a step towards thisgoal, but it is not the �nal step, as Chapter 3, whih introdues the PLAWright language,demonstrates.
10
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1.5.3 Code Generation (Chapter 4)In this text, the term \ode generation" may be onsidered roughly synonymous with fun-tional omposition. Here, the entral issue is linking to a library providing funtional self-desription via annotations. The approah used to mehanize linkage allows the di�erentlevels of the underlying library to be dealt with in a uniform manner.The other desirable properties of an automated system, suh as exible libraryoupling, prodution ode that reets speializations in the high-level language, and high-performane odes based on little user diretion, are also evident in the system examined inthis doument. Chapter 4 is onerned with funtional linkage issues while Chapters 4 and5 ombine to deal with the automated prodution of high-performane ode.1.5.4 Performane (Chapter 5)In the area of sienti� omputation, where linear algebra is a ornerstone, eÆieny isruial. In this hapter, we onsider the issue of performane as it relates to algorithmiimplementation. There are other interpretations of \performane" suh as ode reationtime and the optimal use of the time and talent of human experts, but those are addressedelsewhere. The typial axes of quality in this �eld are the exeution time and spae requiredby exeuting routines.Chapter 5 studies the issues pertinent to suh onerns: modeling, evaluation, hybridalgorithms, and the performane annotations that enable the automation of this proess.1.5.5 Conlusion (Chapter 6)Finally, a summary of the work and its ontributions to the area of linear algebra librarydevelopment is presented. Possible diretions for further study and future work are alsobriey disussed.

11
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Chapter 2Systemati Derivation ofVariantsSine the advent of high performane, distributed-memory parallel omputing, the need forintelligible ode has beome ever greater. The development and maintenane of librariesfor these arhitetures is simply too omplex to be amenable to onventional approahes toimplementation. Attempts to employ traditional methodology have led, in our opinion, tothe prodution of an abundane of anfratuous ode that is diÆult to maintain and nighimpossible to upgrade.Having struggled with these issues for more than a deade, we have onluded thatthe solution is to apply a tehnique from theoretial omputer siene, formal derivation, tothe development of high-performane linear algebra libraries. We think that the resultingapproah results in aesthetially pleasing, oherent ode that failitates intelligent modular-ity and high performane while enhaning on�dene in its orretness. Sine the tehniqueis language independent, it lends itself equally well to a wide spetrum of programming lan-guages (and paradigms) ranging from C and Fortran to C++ and Java. In this hapter, weillustrate our observations by looking at FLAME, a framework that failitates the derivationand implementation of linear algebra algorithms.2.1 IntrodutionWhen onsidering the unmanageable omplexity of omputer systems, Dijkstra reentlymade the following observations [21℄:(i) When exhaustive testing is impossible {i.e., almost always{ our trust an only be basedon proof (be it mehanized or not).(ii) A program for whih it is not lear why we should trust it, is of dubious value.12
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(iii) A program should be strutured in suh a way that the argument for its orretnessis feasible and not unneessarily laborious.(iv) Given the proof, deriving a program justi�ed by it, is muh easier than, given theprogram, onstruting a proof justifying it.In this hapter, we make a number of ontributions to the development linear algebralibraries. These ontributions relate to the above observations as follows:� By borrowing from Dijkstra's own ontributions to omputing siene, we show howto systematially derive families of algorithms for a given matrix operation.� The derivation leads to a strutured statement of the algorithms that mirrors how thealgorithms are often explained in a lassroom setting.� The derivation of the algorithms provides a proof of the orretness of the algorithms.� By implementing the algorithms so that the ode mirrors the algorithms that is theend-produt of this derivation proess, opportunities for the introdution of error areredued. As a result, the proof of the orretness of the algorithm allows us to assertthe orretness of the ode.While the resulting infrastruture, FLAME, allowed us to quikly and reliably implementomponents of a high-performane linear algebra library, it an equally well bene�t libraryusers who need to ustomize a given routine or to extend the funtionality of their ownlibrary.2.2 OverviewIn Setion 2.3.1 we review some basi insights from formal derivation theory. Next, in Se-tion 2.4 we apply these insights to an illustrative example, LU fatorization without pivoting,in order to develop a family of algorithms for a single, given operation. This is followedby Setion 2.5, in whih we summarize our systemati proess for deriving linear algebraalgorithms. Then, in Setion 2.6 we show how library extensions added to the C program-ming language, together with areful formatting, allows one to write ode that reets thealgorithm. The fat that the tehniques an be applied to a more diÆult operation like LUfatorization with partial pivoting is then demonstrated in Setion 2.7. Performane is ofonern in this area and in Setion 2.8 we demonstrate that high performane is not om-promised by raising the level of abstration at whih one odes. Finally, future diretionsand onlusions are given ursory treatment in Setion 2.10 and a more in-depth look inSetion 6.1.2.3 BakgroundSome would immediately draw the onlusion that a hange to a more modern programminglanguage like C++ is at least highly desirable, if not a neessary preursor to writing elegant13
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ode. The fat is that most appliations that all linear algebra pakages are still written inFortran and/or C. Interfaing suh an appliation with a library written in C++ presentsertain ompliations. However, during the mid-1990s, the Message-Passing Interfae (MPI)introdued to the sienti� omputing ommunity a programming model, objet-based pro-gramming, that possesses many of the advantages typially assoiated with the intelligentuse of an objet-oriented language [69℄. Using objets (e.g. ommuniators in MPI) toenapsulate data strutures and hide omplexity, a muh leaner approah an be ahieved.Our own work on PLAPACK borrowed from this approah in order to hide detailsof data distribution and data mapping in the realm of parallel linear algebra libraries. Theprimary onept, also germane to the work presented here, is that PLAPACK raises thelevel of abstration at whih one programs so that indexing is essentially removed from theode, allowing the routine to reet the algorithm as it is naturally presented in a lassroomsetting. Sine our initial work on PLAPACK, we have experimented with similar interfaesin suh ontexts as (parallel) out-of-ore linear algebra pakages [45, 67℄ and a low-levelimplementation of the sequential Basi Linear Algebra Subprograms (BLAS) [42, 44℄.One strong motivation for systematially deriving algorithms and reduing the om-plexity of translating these algorithms to ode omes from the fat that, for a given opera-tion, a di�erent algorithm may provide higher performane depending on the arhitetureand/or the problem dimensions. Some of our previous researh [42℄ demonstrated thatthe eÆient, transportable implementation of matrix-matrix multipliation on a sequentialarhiteture with a hierarhial memory requires a hierarhy of matrix algorithms whoseorganization mirrors that of the memory system under onsideration. Perhaps surprisingly,this is neessary even when the problem size is �xed. In the same paper, we desribe amethodology for omposing these routines. In this way, minimal oding e�ort is requiredto attain superior performane aross a wide spetrum of algorithms, arhitetures, andproblem sizes.Analogously, previous work demonstrated that an eÆient implementation of par-allel matrix multipliation requires both multiple algorithms and a method for seleting anappropriate algorithm for the presented ase if one is to handle operands of various sizesand shapes [40℄. We have ome to a similar onlusion in the ontext of out-of-ore fator-ization algorithms and their implementation using the Parallel Out-of-Core Linear AlgebraPACKage (POOCLAPACK) [45, 66℄. To summarize our experienes: as high-performanearhitetures inorporate ahe, loal, shared, and distributed memories all within one sys-tem, multiple algorithms for a single operation beome neessary for optimal performane.Traditional approahes make the implementation of libraries that span all possibilities nighimpossible.FLAME is the next step in the evolution of these systems. We onsider FLAME tobe an environment in the sense that it enourages the developer to systematially onstruta family of algorithms for a given matrix operation. Ideally, the steps that lead to the algo-rithms are arefully doumented, providing the proof that the algorithms are orret. Onlyafter its orretness an be asserted should the algorithm be translated to ode. Sine theode mirrors the algorithm, its orretness an be asserted as well, and minimal debugging14
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and testing is neessary. One the ode delivers the orret results, funtionality an beextended and/or performane optimizations an be inorporated. We illustrate FLAMEin the simplest setting, for sequential algorithms. Minor modi�ations to PLAPACK andPOOCLAPACK allow the porting to distributed-memory arhitetures and/or out-of-oreomputations with essentially no hange to the ode. The extent of this similarity an beseen by omparing Figure 2.3(a) and Figure 3.72.3.1 The Corretness of LoopsIn a standard text by Gries and Shneider used to teah disrete mathematis to under-graduates in omputer siene we �nd the following material ([36℄, pages 236{237):We prefer to write a while loop using the syntaxdo B ! S odwhere Boolean expression B is alled the guard and statement S is alled therepetend.[The l℄oop is exeuted as follows: If B is false, then exeution of the loop termi-nates; otherwise S is exeuted and the proess is repeated.Eah exeution of repetend S is alled an iteration. Thus, if B is initially false,then 0 iterations our.The text goes on to state:We now state and prove the fundamental invariane theorem for loops. This the-orem refers to an assertion P that holds before and after eah iteration (providedit holds before the �rst). Suh a prediate is alled a loop-invariant.(12.43) Fundamental invariane theorem. Suppose� fP ^BgSfPg holds { i.e. exeution of S begun in a state in whihP and B are true terminates with P true { and� fPg do B ! S od true { i.e. exeution of the loop begun in astate in whih P is true terminates.Then fPg do B ! S od fP ^:Bg holds. [In other words, if the loopis entered in a state where P is true, it will omplete in a state whereP is true and guard B is false.℄The text proeeds to prove this theorem using the axiom of mathematial indution.Let us translate the above programming onstrut into our setting, whih we use toaommodate linear algebra algorithms. Consider the loopwhile B doSenddo15
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where B is some ondition and S is the body of the loop, the above theorem says that� The loop is entered in a state where some ondition P holds, and� for eah iteration, P holds at the top of the loop, and� the body of the loop S has the property that if it is exeuted starting in a state whereP holds it ompletes in a state where P holds.Then if the loop ompletes, it will do so in a state where onditions P and :B both hold.Naturally, P and B are hosen suh that P ^ :B implies that the desired linear algebraoperation has been omputed.A method that formally derives a loop (i.e., iterative implementation) approahesthe problem of determining the body of the loop as follows: First, one must determineonditions B and P . Next, the body S should be developed so that it maintains onditionP while making progress towards ompleting the iterative proess (eventually B shouldbeome false). The operations that omprise S follow naturally from simple manipulationof equalities and equivalenes using matrix algebra. Thanks to the fundamental invarianetheorem, this approah implies orretness of the loop.What we will argue in this paper is that for a large lass of dense linear algebraalgorithms there is a systemati way of determining di�erent onditions P that allow usdevelop loops to ompute a given linear algebra operation. The di�erent onditions yielddi�erent algorithmi variants for omputing the operation. We demonstrate this through theexample of LU fatorization without pivoting. One we have demonstrated the tehniques inthis simpler setting, we will also argue, although somewhat more informally, the orretnessof a hybrid iterative/reursive LU fatorization with partial pivoting in Setion 2.7.2.4 A Case Study: LU FatorizationWe illustrate our approah by onsidering LU fatorization without pivoting. Given a non-singular, n � n matrix ,A, we wish to ompute an n � n lower triangular matrix L withunit main diagonal and an n� n upper triangular matrix U so that A = LU . The originalmatrix A is overwritten by L and U in the proess. We will denote this operation byA Â = LU(A)to indiate that A is overwritten by the LU fators of A. Beause FLAME produes manyvariants of LU fatorization, it is worthwhile to emphasize the fat that, if exat arithmetiis performed, all variants will result in idential results. To see this assume that L1U1 =L2U2 are two di�erent fatorizations. Multiplying both sides by L�12 on the left and U�11on the right yields L = L�12 L1 = U2U�11 = U , where L is unit lower-triangular and Uupper-triangular. Now, L = U implies L = U = I . It follows that L1 = L2 and U1 = U2,so our assumption has been ontradited and the proof of uniqueness is omplete.16
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2.4.1 A lassial derivationThe usual derivation of an algorithm for the LU fatorization proeeds as follows:PartitionA =  �11 aT12a21 A22 ! ; L =  1 0l21 L22 ! ; and U =  �11 uT120 U22 !Now A = LU translates to �11 aT12a21 A22 ! =  1 0l21 L22 ! �11 uT120 U22 ! =  �11 uT12l21�11 l21uT12 + L22U22 !so the following equalities hold:�11 = �11 aT12 = uT12a21 = �11l21 A22 = l21uT12 + L22U22Thus, we arrive at the following algorithm� Overwrite �11 and aT12 with �11 and uT12, respetively (no-op).� Update a21  l21 = a21=�11.� Update A22  A22 � l21uT12.� Fator A22 ! L22U22 (reursively or iteratively).The algorithm is usually implemented as a loop, as illustrated in Fig. 2.1. When presentedin a lassroom setting, this algorithm is typially aompanied by the following progressionof pitures: � urrent A - �11a21�11 aT12� A22 � a21�11 aT12-6Here the double lines indiate how far the omputation has progressed through the matrix.At the urrent stage the ative part of the matrix resides in the lower-right quadrant ofthe left piture. Next, the di�erent parts to be updated are identi�ed and the updatesgiven (middle piture). Finally, the boundary that indiates how far the omputation hasprogressed is moved forward (right piture). It is this sequene of three pitures that we willtry to apture in the derivation, the spei�ation of the algorithm, and the implementationof the algorithm. 17
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partition A! � ATL ATRABL ABR � where ATL is 0� 0do until ABR is 0� 0repartition � ATL ATRABL ABR �! 0� A00 a01 A02aT10 �11 aT12A20 a21 A22 1A where �11 is a salar�11  �11 = �11 (no-op)aT12  uT12 = aT12 (no-op)a21  l21 = a21=�11A22  A22 � l21uT12ontinue with � ATL ATRABL ABR � 0� A00 a01 A02aT10 �11 aT12A20 a21 A22 1Aenddo Figure 2.1: Unbloked lazy algorithm for LU fatorization.2.4.2 But what is the loop-invariant?Notie that in the above algorithm the original matrix is overwritten by intermediate resultsuntil �nally it ontains L and U . Let Â indiate the matrix in whih the LU fatorization isomputed, keeping in mind that Â overwrites A as part of the algorithm. Notie that afterk iterations of the algorithm in Fig. 2.1, Â ontains a partial result. We will denote thispartial result by Âk.In order to prove orretness, one question we must ask is what intermediate value,Âk, is in Â at any partiular stage of the algorithm. More preisely, we will ask the questionof what the ontents are at the beginning of the loop that implements the omputation ofthe fatorization (e.g., the loop in Fig. 2.1). To answer this question, partition the matriesas follows: A =  A(k)TL A(k)TRA(k)BL A(k)BR ! ; L =  L(k)TL 0L(k)BL L(k)BR ! ;U =  U (k)TL U (k)TR0 U (k)BR ! and Âk =  Â(k)TL Â(k)TRÂ(k)BL Â(k)BR !where A(k)TL, L(k)TL, U (k)TL , and Â(k)TL are all k � k matries and \T", \B", \L", and \R" standfor Top, Bottom, Left, and Right, respetively.Notie that A(k)TL A(k)TRA(k)BL A(k)BR ! =  L(k)TL 0L(k)BL L(k)BR ! U (k)TL U (k)TR0 U (k)BR !18
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=  L(k)TLU (k)TL L(k)TLU (k)TRL(k)BLU (k)TL L(k)BLU (k)TR + L(k)BRU (k)BR !so that the following equalities must hold:A(k)TL = L(k)TLU (k)TL (2.1)A(k)TR = L(k)TLU (k)TR (2.2)A(k)BL = L(k)BLU (k)TL (2.3)A(k)BR = L(k)BLU (k)TR + L(k)BRU (k)BR (2.4)We now show that di�erent onditions on the ontents of Â ditate di�erent algorithmivariants for omputing the LU fatorization, and that these di�erent onditions an besystematially generated from Equations 2.1{2.4.Notie that in Equations 2.1{2.4 the following partial results towards the omputa-tion of the fatorization an be identi�ed:LnU (k)TL ; L(k)BL; U (k)TR; L(k)BLU (k)TR; and LnU (k)BRHere we use the notation LnU to denote lower and upper triangular matries that are storedin a square matrix by overwriting the lower and upper triangular parts of that matrix. Reallthat L has ones on the diagonal that need not be stored. We restrit our study to algorithmsthat employ Gaussian elimination and do not involve redundant omputations. Further, werequire that one or more of the partial results ontributing to the �nal omputation havebeen omputed. A few observations:� If L(k)TL has been omputed, the elements of U (k)TL has been omputed as well.� Sine L(k)BL = A(k)BLU (k)�1TL , data dependeny onsiderations imply that U (k)TL must beomputed before L(k)BL.� Similarly, sine U (k)TR = L(k)�1TL A(k)TR, data dependeny analysis implies that L(k)TL needsto be omputed before U (k)TR.� Sine the omputation overwritesA, if L(k)BLU (k)TR has been omputed, Â(k)BR must ontainA(k)BR � L(k)BLU (k)TR.� If L(k)BR has been omputed, we assume that U (k)BR has been omputed as well (see �rstbullet).� If LnU (k)BR has been omputed, A(k)BR � L(k)BLU (k)TR must have been omputed �rst.Taking into aount the above observations, we give possible ontents of Âk inTable 2.1. The �rst and last onditions indiate that no omputation has been performed orthe �nal result has been omputed, neither of whih is a reasonable ondition to maintain19
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Table 2.1: Possible loop-invariants for LU fatorization without pivoting.Condition Âk ontainsNo omputation has ourred.  A(k)TL A(k)TRA(k)BL A(k)BR !Only (2.1) is satis�ed.  LnU (k)TL A(k)TRA(k)BL A(k)BR !Only (2.1) and (2.2) have been satis�ed.  LnU (k)TL U (k)TRA(k)BL A(k)BR !Only (2.1) and (2.3) have been satis�ed.  LnU (k)TL A(k)TRL(k)BL A(k)BR !Only (2.1), (2.2), and (2.3) have been satis�ed.  LnU (k)TL U (k)TRL(k)BL A(k)BR !(2.1), (2.2), and (2.3) have been satis�ed and asmuh of (2.4) has been omputed without omput-ing any part of L(k)BR or U (k)BR.  LnU (k)TL U (k)TRL(k)BL A(k)BR � L(k)BLU (k)TR !
(2.1), (2.2), (2.3), and (2.4) have all been satis�ed.  LnU (k)TL U (k)TRL(k)BL LnU (k)BR !

20
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as part of the loop. This leaves �ve loop-invariants whih, we will see, lead to �ve di�erentvariants for LU fatorization.Note that in this paper we will not onern ourselves with the question of whetherthe above onditions exhaust all possibilities. However, they do give rise to many ommonlydisussed algorithms. In fat, in [23℄ six variants, alled the ijk orders, of A = LU are listed.The jki form is ommonly known as a left-looking algorithm while the ikj method is left-looking on AT . Together, they orrespond to the row- and olumn-lazy variants disussedin this paper. The kij and kji forms both orrespond to what has been traditionally alledthe right-looking algorithm; here, both would be deemed forms of the eager algorithm, onea olumn- and one a row-oriented version. The ijk and jik forms are more ommonly knownas the Doolittle (Crout) algorithm and orrespond to row- and olumn-oriented versionsof the row-olumn-lazy variant onsidered in this doument. The lazy algorithm disussedin this paper has no orresponding variant in the ijk family of algorithms. Further, theonditions delineated above yield all algorithms depited on the over of, and disussedin, G.W. Stewart's reent book on matrix fatorization [71℄. This omes as no surpriseas we, like Stewart, have adopted some ommon impliit assumptions about both matrixpartitioning and the nature of algorithmi advanement. Our a priori assumptions wereonly slightly less onstriting than those imposed by the authors who employed the ijksheme mentioned above. In this paper we have restrited ourselves to a onsideration ofonly those algorithms whose progress is \simple." That is, eah iteration of the algorithmis geographially monotoni and formulaially idential. The ombination of these twoproperties leads to algorithms whose (indutive) proofs of orretness are straightforwardand whose implementations, given our framework, are virtually foolproof.We will label any algorithm \Lazy" if it does the least amount of omputationpossible in the indutive step and \Eager" if it performs as muh work as possible at thatpoint. We explain our lassi�ation further in [43℄. It needs to be evaluated against a largelass of algorithms before we make any de�nitive laims regarding is usefulness.2.4.3 Lazy algorithmThis algorithm is often referred to as a bordered algorithm in the literature. Stewart, [71℄rather olorfully, refers to it as Sherman's marh.Unbloked AlgorithmLet us assume that only (2.1) has been satis�ed. To determine the body of the loop (state-ment S), the question beomes how to update the ontents of Â: Â(k)BR Â(k)TRÂ(k)BL A(k)BR ! =  LnU (k)BR A(k)TRA(k)BL A(k)BR !�!  Â(k+1)BR Â(k+1)TRÂ(k+1)BL Â(k+1)BR ! =  LnU (k+1)BR A(k+1)TRA(k+1)BL A(k+1)BR !
21
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To answer this, repartition A(k)TL Â(k)TRA(k)BL Â(k)BR ! = 0BB� A(k)00 � a(k)01 A(k)02 � a(k) T10A(k)20 !  �(k)11 a(k) T12a(k)21 A(k)22 ! 1CCAwhere A(k)00 is k � k (and thus equal to A(k)TL), and �(k)11 is a salar. Repartition Âk, L, andU similarly. This repartitioning identi�es submatries that must be updated in order to beable to move the boundary (indiated by the double lines) forward. Notie that using thisnew partitioning, Âk urrently ontains LnU (k)TL A(k)TRA(k)BL A(k)BR ! = 0BB� LnU (k)00 � a(k)01 A(k)02 � a(k) T10A(k)20 !  �(k)11 a(k) T12a(k)21 A(k)22 ! 1CCAAfter moving the double lines, the partitioning of A beomes A(k+1)TL A(k+1)TRA(k+1)BL A(k+1)BR ! = 0BB�  A(k)00 a(k)01a(k) T10 �11 !  A(k)02a(k) T12 !� A(k)20 a(k)21 � A(k)22 1CCAand the partitionings of Âk+1, L, and U hange similarly. Thus, Âk+1 must ontain LnU (k+1)TL A(k+1)TRA(k+1)BL A(k+1)BR ! = 0BB�  LnU (k)00 u(k)01l(k)T10 �(k)11 !  A(k)02a(k) T12 !� A(k)20 a(k)21 � A(k)22 1CCAIn summary, in order to maintain the loop-invariant, the ontents of Â must be updatedlike0BB� LnU (k)00 � a(k)01 A(k)02 � a(k) T10A(k)20 !  �(k)11 a(k)T12a(k)21 A(k)22 ! 1CCA ! 0BB�  LnU (k)00 u(k)01l(k)T10 �(k)11 !  A(k)02a(k) T12 !� A(k)20 a(k)21 � A(k)22 1CCAThus, it suÆes to ompute u(k)01 , l(k)10 , and �(k)11 , overwriting the orresponding parts a(k)01 ,a(k)10 , and �(k)11 .To determine how to ompute these quantities, onsider0B� A(k)00 a(k)01 A(k)02a(k) T10 �(k)11 a(k) T12A(k)20 a(k)21 A(k)22 1CA = 0B� L(k)00 0 0l(k) T10 1 0L(k)20 l(k)21 L(k)22 1CA0B� U (k)00 u(k)01 U (k)020 �(k)11 u(k)T120 0 U (k)22 1CA= 0B� L(k)00 U (k)00 L(k)00 u(k)01 L(k)00 U (k)02l(k)T10 U (k)00 l(k)T10 u(k)01 + �(k)11 l(k)T10 U (k)02 + u(k)T12L(k)20 U (k)00 L(k)20 U (k)01 + l(k)21 �(k)11 L(k)20 U (k)02 + l(k)21 u(k)T12 + L(k)22 U (k)22 1CA22
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partitionA! � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0repartition� ATL ATRABL ABR �! A00 a01 A02aT10 �11 aT12A20 a21 A22 !where �11 is a salara01  u01 = L�100 a01aT10  lT10 = aT10U�100�11  �11 = �11 � lT10u01ontinue with� ATL ATRABL ABR �  A00 a01 A02aT10 �11 aT12A20 a21 A22 !enddo

partitionA! � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0determine blok size brepartition� ATL ATRABL ABR �! A00 A01 A02A10 A11 A12A20 A21 A22 !where A11 is b� bA01  U01 = L�100 A01A10  L10 = A10U�100A11  LnU11 = LU(A11 � L10U01)ontinue with� ATL ATRABL ABR �  A00 A01 A02A10 A11 A12A20 A21 A22 !enddoFigure 2.2: Unbloked and bloked versions of the lazy variant for omputing the LU fa-torization of a square matrix A (without pivoting).From this equation we �nd that the following equalities must hold:A(k)00 =L(k)00 U (k)00 a(k)01 =L(k)00 u(k)01 A(k)02 =L(k)00 U (k)02a(k)T10 = l(k)T10 U (k)00 �(k)11 = l(k)T10 u(k)01 + �(k)11 a(k)T12 = l(k)T10 U (k)02 + u(k)T12A(k)20 =L(k)20 U (k)00 a(k)21 =L(k)20 U (k)01 + l(k)21 �(k)11 A(k)22 =L(k)20 U (k)02 + l(k)21 u(k)T12 + L(k)22 U (k)22 (2.5)To ompute u(k)01 one must solve the triangular system L(k)00 u(k)01 = a(k)01 . The result anoverwrite a(k)01 . To ompute l(k)10 we solve the triangular system l(k)T10 U (k)00 = a(k) T10 . Theresult an overwrite a(k)T10 . To determine �11 we merely ompute �(k)11 = �(k)11 � l(k)T10 u(k)01 .The result an overwrite �(k)11 . This motivates the algorithm in Fig. 2.2 (left) for overwritinga given non-singular, n� n matrix A with its LU fatorization.To demonstrate that in deriving the algorithm we have onstrutively proven itsorretness, onsider the following:Theorem 1 The algorithm in Fig. 2.2 (left) overwrites a given non-singular, n�n matrix,A, with its LU fatorization.Proof: To prove this theorem, we merely invoke the Fundamental invariane theorem.Here the guard B is ABR 6= 0� 0, prediate P isÂ ontains =  LnUTL ATRABL ABR ! where LnUTL is k � k23
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and the statement S is the body of the loop in Fig. 2.2 (left).First, notie that the statementPartition A =  ATL ATRABL ABR !where ATL is 0� 0has the property that after its exeution P holds sine LnUTL, ATR, and ABL are all empty(they have row and/or olumn dimensions equal to zero) and ABR = A. Thus, just beforethe loop is �rst entered Â =  LnUTL ATRABL ABR ! = ABR = Aand we onlude that P holds when k = 0.Reall that the body of the loop was developed so that fP ^ BgSfPg holds, i.e. ifthe ondition holds at the top of the loop, then it holds at the bottom of the loop (justbefore the enddo). Also, sine at eah step the size of ABR dereases by one, guard B willeventually beome false, fPg do B ! S od true holds (i.e. exeution of the loop begunin a state in whih P is true terminates). We have shown that all of the onditions of theFundamental invariane theorem hold. We therefore onlude that if the loop is entered ina state where P holds, it will omplete in a state where P is true and guard B is false.This means that Â ontains  LnUTL ATRABL ABR ! where ABR is 0�0 and ompletionof the loop transpires when k = n. Thus the �nal ontents of the matrix are Â = LnUTLwhere LTL and UTL are unit-lower and upper-triangular matries of order n. We onludethat upon exiting the loop, the matrix has been overwritten by its LU fatorization. 2Bloked AlgorithmFor performane reasons it beomes bene�ial to derive a bloked version of the above-presented algorithm. The derivation losely follows that of the unbloked algorithm: Againassume that only (2.1) has been satis�ed. The question is now how to ompute Âk+b fromÂk for some small blok size b (i.e. 1 < b� n). To answer this, repartitionA =  A(k)TL A(k)TRA(k)BL A(k)BR ! = 0B� A(k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CA (2.6)where A(k)00 is k � k (and thus equal to A(k)TL), and A(k)11 is b� b. Repartition L, U , and Âkonformally. Notie it is our assumption that Âk holdsÂk =  LnU (k)TL A(k)TRA(k)BL A(k)BR ! = 0B� LnU (k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CA24
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The desired ontents of Âk+b are given byÂk+b =  Â(k+b)TL Â(k+b)TRÂ(k+b)BL Â(k+b)BR ! = 0B� LnU (k)00 U (k)01 A(k)02L(k)10 LnU(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CAThus, it suÆes to ompute U (k)01 , L(k)10 , L(k)11 , and U (k)11 .To derive how to ompute these quantities, onsiderA = 0B� A(k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CA = 0B� L(k)00 0 0L(k)10 L(k)11 0L(k)20 L(k)21 L(k)22 1CA0B� U (k)00 U (k)01 U (k)020 U (k)11 U (k)120 0 U (k)22 1CA= 0B� L(k)00 U (k)00 L(k)00 U (k)01 L(k)00 U (k)02L(k)10 U (k)00 L(k)10 U (k)01 + L(k)11 U (k)11 L(k)10 U (k)02 + L(k)11 U (k)12L(k)20 U (k)00 L(k)20 U (k)01 + L(k)21 U (k)11 L(k)20 U (k)02 + L(k)21 U (k)12 + L(k)22 U (k)22 1CAThis yields the equalitiesA(k)00 =L(k)00 U (k)00 A(k)01 =L(k)00 U (k)01 A(k)02 =L(k)00 U (k)02A(k)10 =L(k)10 U (k)00 A(k)11 =L(k)10 U (k)01 + L(k)11 U (k)11 A(k)12 =L(k)10 U (k)02 + L(k)11 U (k)12A(k)20 =L(k)20 U (k)00 A(k)21 =L(k)20 U (k)01 + L(k)21 U (k)11 A(k)22 =L(k)20 U (k)02 + L(k)21 U (k)12 + L(k)22 U (k)22 (2.7)Thus,1. To ompute U (k)01 we solve the triangular system L(k)00 U (k)01 = A(k)01 . The result anoverwrite A(k)01 .2. To ompute L(k)10 we solve the triangular system L(k)10 U (k)00 = A(k)10 . The result anoverwrite A(k)10 .3. To ompute L(k)11 and U (k)11 we simply update A(k)11  A(k)11 �L(k)10 U (k)01 = A(k)11 �A(k)10 A(k)01after whih the result an be fatored into L(k)11 and U (k)11 using the unbloked algorithm.The result an overwrite A(k)11 .The preeding disussion motivates the algorithm in Fig. 2.2 (right) and Fig. 2.3(b)for overwriting the given non-singular, n� n matrix A with its LU fatorization. A arefulanalysis shows that the bloked algorithm does not inur even a single extra omputationrelative to the unbloked algorithm.The proof of the following theorem is similar to that of Theorem 1.Theorem 2 The algorithm in Fig. 2.2 (right) overwrites a given non-singular, n�n matrix,A, with its LU fatorization. 25
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2.4.4 Row-lazy algorithmAs a point of referene, Stewart [71℄ alls this algorithm Pikett's harge south.Let us assume that only (2.1) and (2.2) have been satis�ed. We will now disussonly a bloked algorithm that omputes Âk+b from Âk while maintaining these onditions.Repartition A, L, U , and Âk onformally as in (2.6). Our assumption is that Âkholds Âk =  LnU (k)TL U (k)TRA(k)BL A(k)BR ! = 0B� LnU (k)00 U (k)01 U (k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CAThe desired ontents of Âk+b are given byÂk+b =  Â(k+b)TL Â(k+b)TRÂ(k+b)BL Â(k+b)BR ! = 0B� LnU (k)00 U (k)01 U (k)02L(k)10 LnU (k)11 U (k)12A(k)20 A(k)21 A(k)22 1CAThus, it suÆes to ompute L(k)10 , LnU(k)11 , and U (k)12 . Realling the equalities in (2.7) wenotie that1. To ompute L(k)10 we an solve the triangular system L(k)10 U (k)00 = A(k)10 . The result anoverwrite A(k)10 .2. To ompute L(k)11 and U (k)11 we an update A(k)11  A(k)11 � L(k)10 U (k)01 = A(k)11 � A(k)10 A(k)01after whih the result an be fatored into L(k)11 and U (k)11 . The result an overwriteA(k)11 .3. To ompute U (k)12 we an update A(k)12  A(k)12 � L(k)10 U (k)02 after whih we solve thetriangular system L(k)11 U (k)12 = A(k)12 , overwriting the original A(k)12 .These steps and the preeding disussion lead one diretly to the algorithm inFig. 2.3().The proof of the following theorem is similar to that of Theorem 1.Theorem 3 The algorithm in Fig. 2.3() overwrites a given non-singular, n � n matrix,A, with its LU fatorization.2.4.5 Column-lazy algorithmThis algorithm is referred to as a left-looking algorithm in [27℄ while Stewart [71℄ alls itPikett's harge east.Let us assume that only (2.1) and (2.3) have been satis�ed. Now it suÆes toompute U (k)01 , LnU (k)11 , and L(k)21 . Using the same tehniques as before one derives thealgorithm in Fig. 2.3 (d). Again, this algorithm overwrites the given non-singular, n � nmatrix, A, with its LU fatorization.The proof of the following theorem is similar to that of Theorem 1.26
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Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Repartition� ATL ATRABL ABR �=0� A00 A01 A02A10 A11 A12A20 A21 A22 1Awhere A11 is b� b(a) Eager:A11  LnU 11 = LU(A11)A12  U12 = L�111 A12A21  L21 = A21U�111A22  A22 � L21U12(b) Lazy:View A00 as LnU 00A01  L01 = L�100 A01A10  L10 = A10U�100A11  LnU 11 = LU(A11 �L10U01) () Row-lazy:View A00 as LnU 00A10  L10 = A10U�100A11  LnU 11 = LU(A11 �L10U01)A12  U12 = L�111 (A12 � L10U02)(d) Column-lazy:View A00 as LnU 00A01  U01 = L�100 A01A11  LnU 11 = LU(A11 �L10U01)A21  L21 = (A21 � L20U01)U�111 (e) Row-olumn-lazy:A11  LnU 11 = LU(A11 �L10U01)A12  U12 = L�111 (A12 � L10U02)A21  L21 = (A21 � L20U01)U�111Continue with� ATL ATRABL ABR �=0� A00 A01 A02A10 A11 A12A20 A21 A22 1AenddoFigure 2.3: LU fatorization without pivoting for �ve ommonly enountered variants.
27
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Theorem 4 The algorithm in Fig. 2.3(d) overwrites a given non-singular, n � n matrix,A, with its LU fatorization.2.4.6 Row-olumn-lazy algorithmThis algorithm is often referred to as Crout's methods in the literature [18℄.We assume that only (2.1), (2.2), and (2.3) have been satis�ed. This time, it suÆesto ompute LnU(k)11 , U (k)12 , and L(k)21 , yielding the algorithm in Fig. 2.3 (e). Again, thisalgorithm overwrites a given non-singular, n� n matrix, A, with its LU fatorization.The proof of the following theorem is similar to that of Theorem 1.Theorem 5 The algorithm in Fig. 2.3(e) overwrites a given non-singular, n � n matrix,A, with its LU fatorization.2.4.7 Eager algorithmThis algorithm is often referred to as lassial Gaussian elimination.We proeed under the assumption that (2.1), (2.2), and (2.3) have been satis�ed,and as muh of (2.4) as possible has been omputed, without ompleting the omputationof any part of LBR and UBR. Repartition A, L, U , and Âk onformally as in (2.6). Notie,our assumption is that Âk holds LnU (k)TL U (k)TRL(k)BL A(k)BR � L(k)BLU (k)TR ! = 0B� LnU (k)00 U (k)01 U (k)02L(k)10 A(k)11 � L(k)10 U (k)01 A12 � L(k)10 U (k)02L(k)20 A(k)21 � L(k)20 U (k)01 A(k)22 � L(k)20 U (k)02 1CAThe desired ontents of Âk+b are given by LnU(k+b)TL U (k+b)TRL(k+b)BL A(k+b)BR � L(k+b)BL U (k+b)TR != 0B� LnU (k)00 U (k)01 U (k)02L(k)10 LnU (k)11 U (k)12L(k)20 L(k)21 A(k)22 � L(k)20 U (k)02 � L(k)21 U (k)12 1CAThus, it suÆes to ompute LnU (k)11 , L(k)21 , U (k)12 , and to update Â(k)22 . Realling the equalitiesin (2.7) we �nd1. To ompute L(k)11 and U (k)11 we fator Â(k)11 whih already ontains A(k)11 �L(k)10 U (k)01 . Theresult an overwrite Â(k)11 .2. To ompute U (k)12 we update Â(k)12 whih already ontains A(k)12 � L(k)10 U (k)02 by solvingL(k)11 U (k)12 = Â(k)12 , overwriting the original Â(k)12 .3. To ompute L(k)21 we update A(k)21 whih already ontains A(k)21 � L(k)20 U (k)01 by solvingL(k)21 U (k)11 = Â(k)21 , overwriting the original Â(k)21 .28
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4. We then update Â(k)22 whih already ontains A(k)22 � L(k)20 U (k)02 with Â(k)22 � L(k)21 U (k)12 ,overwriting the original Â(k)22 .The resulting algorithm is given in Fig. 2.3(a). Notie that this algorithm is the blokedequivalent to the algorithm derived in Setion 2.4.1.The proof of the following theorem is similar to that of Theorem 1.Theorem 6 The algorithm in Fig. 2.3(a) overwrites a given non-singular, n � n matrix,A, with its LU fatorization.2.5 A Reipe for Deriving AlgorithmsThe derivations of the di�erent algorithmi variants of LU fatorization, detailed above,were extremely systemati. The following reipe was used:1. State the operation to be performed.2. Partition the operands. Notie that some justi�ation is needed for the partiular wayin whih they are partitioned. For LU fatorization, this has to do with the fat thatbloks of zeroes must be isolated in L and U , as they are triangular matries.3. Multiply out all matrix produts orresponding to this partitioning.4. Equate the submatrix relations that result from the partitioning of Step 3. These de�neomputations that the algorithm must perform in order to maintain orretness.5. Pik a loop-invariant from the set of possible loop-invariants that satisfy the equa-tions given in Step 4. Notie that this loop-invariant plays the role of an indutionhypothesis.6. From that loop-invariant, derive the steps required to maintain the loop-invariant whilemoving the algorithm forward in the desired diretion. This requires the followingsubsteps:(a) Repartition so as to expose the boundaries after they are moved.(b) Indiate the urrent ontents for the repartitioned matries.() Indiate the desired ontents for the repartitioned matries suh that the loop-invariant is maintained.(d) Determine the omputations required to transform (update) the ontents indi-ated in 6b to those indiated in 6, (Naturally, it must be veri�ed that theseomputations are possible.)7. Update the partitioning of the matries.8. Continue until the partitioning yields the null matrix for the \BR" submatrix.29
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9. Classify the algorithm. We have developed a systemati way of lassifying the derivedalgorithms based upon the nature of the indutive step of the algorithm. While weuse this lassi�ation in the labeling of the algorithms in the previous setion, we willnot go into further detail here.A more omplete reipe for a broader lass of linear algebra operations an be found in [43℄.We again point out that the reipe impliitly provides a proof of orretness forthe algorithm sine Steps 5{6d emulate the proof by mathematial indution. Further,the tehnique employed for deriving these variants of LU fatorization generalizes to otherfatorization algorithms, e.g. Cholesky and QR.2.6 Enoding the Algorithm in CIn this setion we briey disuss how dense linear algebra algorithms, as presented inFigs. 2.1{2.3, an be translated into ode. We �rst show a more traditional approahas it appears in popular pakages like LAPACK. Next, we present an alternative frameworkthat allows implementation at a higher level of abstration that mirrors how we naturallypresent the algorithms. This seond approah has been suessfully used in PLAPACK andour FLAME framework represents a re�nement of this methodology.2.6.1 Classi implementation with the BLASLet us onsider the bloked eager algorithm for the LU fatorization presented in Fig. 2.3(a). This algorithm requires an LU fatorization of a small matrix, A11  LnU11 =LU fat.(A11), triangular solves with multiple right-hand-sides to update A12  U12 =L�111 A12 and A21  L21 = A21U�111 , and a matrix-matrix multiply to update A22  A22 � L21U12. The triangular solves and matrix-matrix multiply are part of the BasiLinear Algebra Subprograms (BLAS) (alls to the routines DTRSM and DGEMM, respetively).To understand this ode, it helps to onsider the partitioning of the matrix for a typialloop index j, as illustrated in Fig. 2.4: A11 is B by B and starts at element A(J,J), A21is N-(J-1)-B by B and starts at element A(J+B,J) , A12 is B by N-(J-1)-B and starts atelement A(J,J+B), and A22 is N-(J-1)-B by N-(J-1)-B and starts at element A(J+B,J+B).The resultant ode is given in Fig. 2.5.Given this piture, it is relatively easy to determine all of the parameters that mustbe passed to the appropriate BLAS routines.2.6.2 The algorithm is the odeWe would argue that it is relatively easy to generate the ode in Fig. 2.5 given the algorithmin Fig. 2.3(a) and the piture in Fig. 2.4. However, the translation of the algorithm tothe ode is made tedious and error-prone by the fat that one has to think very arefullyabout indies and matrix dimensions. While this is not muh of a problem if one only hadto implement just one algorithm, real diÆulties may arise when implementing a number30
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A00 A01 A02A10 A11 A12t tt tJ - -J+B - -??J ??J+B 	 J-1	 B	 N-(J-1)-B|{z}J-1 |{z}B |{z}N-J-B+1A20 A21 A22Figure 2.4: Partitioning of matrix A with all dimensions annotated when A00 = ATL is(j � 1)� (j � 1).SUBROUTINE LU_EAGER_LEVEL3( N, A, LDA, NB )INTEGER N, LDA, NB, J, BDOUBLE PRECISION A( LDA, * ), ONE, NEG_ONEPARAMETER ( ONE = 1.0D00, NEG_ONE = -1.0D00 )DO J=1, N, NBB = MIN( N-J+1, NB )C A11 <- L\U11 = LU fat( A11 )CALL LU_EAGER_LEVEL2( B, A( J,J ), LDA )IF ( J+B <= N ) THENC A12 <- U12 = inv( L11 ) * A12CALL DTRSM("LEFT", "LOWER TRIANGULAR", "NO TRANSPOSE", "UNIT DIAGONAL",$ ONE, B, N-J-B, A( J,J ), LDA, A( J, J+B ), LDA)C A21 <- L21 = A21 * inv( U11 )CALL DTRSM("RIGHT", "UPPER TRIANGULAR", "TRANSPOSE", "NONUNIT DIAGONAL",$ ONE, N-J-B, B, A( J,J ), LDA, A( J+B, J ), LDA)C A22 <- A22 - A21 * A12CALL DGEMM("NO TRANSPOSE", "NO TRANSPOSE", N-(J-1)-B, N-(J-1)-B, B,$ NEG_ONE, A( J+B, J ), LDA, A( J, J+B ), LDA, ONE, A( J+B, J+B), LDA)ENDIFENDDORETURNENDFigure 2.5: Fortran implementation of bloked eager LU fatorization algorithm using theBLAS. (Find the bug without referring to Fig. 2.4 or the text!)
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Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Repartition� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !where A11 is b� binsert update hereContinue with� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !enddoFigure 2.6: Algorithm skeleton for LU fatorization without pivoting.of possible algorithmi variants for a given operation or, in the ase of a library suh asLAPACK, implementing even a single suh variant of eah of a large number of operations.One beomes even more autely aware of these issues when distributed-memory arhiteturesenter the piture, as in SaLAPACK.In an e�ort to make the ode look like the algorithms given in Fig. 2.3, while si-multaneously aounting for the onstraints imposed by C and Fortran, we have developedFLAME. The algorithmi and ode skeletons shared by the �ve variants for the LU fa-torization, developed earlier in this paper, are given in Figs. 2.6 and 2.7, respetively. Tounderstand the ode, it suÆes to realize that A is being passed to the routine as a datastruture, A, that desribes all attributes of this matrix, suh as dimensions and methodof storage. Inquiry routines like FLA Obj length are used to extrat information, in thisase the row dimension of the matrix. Finally, ATL, A00, et. are simply referenes into theoriginal array desribed by A.If one is familiar with the oding onventions used to name the BLAS kernels, it islear that the following ode segments, when entered in the appropriate plae (lines 22-34)in the ode in Fig. 2.7, implement the di�erent variants of the LU fatorization:Lazy algorithm23 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,24 ONE, A00, A10);25 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,26 ONE, A00, A01);27 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);28 FLA_LU_nopivot_level2(A11); 32
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1 #inlude "FLAME.h"23 void FLA_LU_nopivot_skeleton( FLA_Obj A, nb_alg )4 {5 FLA_Obj ATL, ATR, A00, A01, A02,6 ABL, ABR, A10, A11, A12,7 A20, A21, A22;89 FLA_Part_2x2( A, &ATL, /**/ &ATR,10 /* ************** */11 &ABL, /**/ &ABR,12 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL );1314 while ( b=min(min(FLA_Obj_length( ABR ), FLA_Obj_width( ABR )), nb_alg) != 0 )15 {16 FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, /**/ &A01, &A02,17 /* ************* */ /* ******************** */18 /**/ &A10, /**/ &A11, &A12,19 ABL, /**/ ABR &A20, /**/ &A21, &A22,20 /* with */ b, /* by */ b, /* A11 split from */ FLA_BR );21 /* ********************************************************************* */insert ode for update here31 /* ********************************************************************* */32 FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, A01, /**/ A02,33 /**/ A10, A11, /**/ A12,34 /* ************** */ /* ****************** */35 &ABL, /**/ &ABR, A20, A21, /**/ A22,36 /* with A11 added to submatrix */ FLA_TL );37 }38 }Figure 2.7: A ode skeleton for the C implementation of many of the bloked LU fatorizationalgorithms using FLAME.
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Row-lazy algorithm23 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,24 ONE, A00, A10);25 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);26 FLA_LU_nopivot_level2(A11);27 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12);28 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,29 ONE, A11, A12);Column-lazy algorithm23 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,24 ONE, A00, A01);25 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);26 FLA_LU_nopivot_level2(A11);27 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, A01, ONE, A21);28 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,29 ONE, A11, A21);Row-olumn-lazy algorithm23 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);24 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, A01, ONE, A21);25 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12);26 FLA_LU_nopivot_level2(A11);27 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,28 ONE, A11, A12);29 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,30 ONE, A11, A21);Eager algorithm23 FLA_LU_nopivot_level2( A11 );24 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,25 ONE, A11, A12);26 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,27 ONE, A11, A21);28 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A21, A12, ONE, A22);2.6.3 Positive features of the FLAME approahNaturally, one an argue that determining whih of the two methods for oding the algo-rithms might be deemed \superior" is simply a matter of taste. However, to support ourase, we list the following questions and/or observations:� What if a bug were introdued into the ode in Fig. 2.5? Indeed, in that ode we\aidentally" replaed N-(J-1)-B with N-J-B. This kind of bug is extremely hardto trak down sine the only lue is that the ode produes the wrong answer orauses a segmentation fault. A similar bug is not as easily introdued into the odeimplemented using FLAME sine it does not ontain indies. Furthermore, with this34
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approah it is easy to perform a run-time hek in order to determine if the dimensionsof the di�erent matrix operands passed to a routine are onsistent.� When oding all variants of the LU fatorization one inherently has to derive allalgorithms, leading to desriptions like those given in Fig. 2.3. However, translatingthose to ode like that given in Fig. 2.5 would require several areful onsiderations ofthe piture in Fig. 2.4. Moreover, due to the detailed and extensive indexing involvedin that approah, onsiderable testing would be required before one ould delare theode bug-free. By ontrast, given the algorithms, it has been argued that generatingall variants using FLAME is straightforward. As has already been mentioned, sinethe ode losely resembles the algorithm, one an be muh more on�dent about itsorretness before the ode is tested.� What if we wished to parallelize the given ode? Notie that parallelizing a smallsubset of the funtionality of LAPACK as part of the SaLAPACK projet has takenonsiderable e�ort. The FLAME ode an be transformed into PLAPACK ode es-sentially by replaing FLA by PLA . This highlights the one-to-one orrespondenebetween FLAME and PLAPACK odes; this orrespondene is found to be lakingwhen one onsiders LAPACK and SaLAPACK odes in the same light.� What if we needed a parallel out-of-ore version of the ode? In priniple, theFLAME ode an be transformed into Parallel Out-of-Core Linear Algebra PACK-age (POOCLAPACK) ode by replaing FLA by POOCLA .2.6.4 But what about Fortran?Again using MPI as an inspiration, a Fortran interfae is available for FLAME. Examplesof Fortran ode are available on the FLAME web page, given at the end of this paper.2.6.5 Proving the implementation orretIn Setion 2.4.3 we proved orretness of the lazy algorithm and in subsequent subsetions ofSetion 2.4 asserted that the orretness of the other algorithms an be established in muhthe same way. If the routines alled by the desribed FLAME ode orretly implementthe operations implied by their names, then it an be argued that the ode itself is orret.Indeed, debugging is not neessary.There are a number of reasons that we are omfortable in making suh a boldassertion. The justi�ations for the statement rely upon features of both our systematialgorithmi design methodology, the library supporting the implementation of the algorithm,and to the relationship between the two.The manner in whih we systematially generate algorithms relies, primarily, on twodesign pillars, whih together make up FLAME. The �rst is that we have limited the lass ofproblems under onsideration to those in linear algebra. The seond is that our algorithms35
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onsistently build upon the fundamental invariane theorem. This restrition leads to thedevelopment of algorithms whose orretness an be established.Naturally, FLAME is designed to express these systematially generated algorithmsin a manner that is both onise and unambiguous. Therefore, the FLAME ode an bemade to mirror the algorithms thus produed. This leads one to onlude that the two mostommon soures of error are eliminated. The translation from algorithm to ode is easilyautomatable beause of the one-to-one relation between the two, so that a very ommonmistake, namely the ode not reeting the algorithm (when one onsiders a textual versionof the algorithm as it might be presented in a textbook), an be obviated. A seond ommonmistake made with suh odes, indexing errors, is eliminated from the top-level expressionof FLAME ode beause FLAME does no expliit indexing. To be ertain, there are afew support routines within FLAME that perform indexing. However, these routines areso small that they are amenable to both standard proof-of-orretness tehniques and totruly \exhaustive" testing. In a sense, these routines are analogous to FLAME's \assemblylanguage" and their reliability is omparable to that of a robust ompiler.Beause our method of derivation leads to a lass of algorithms whose proof of or-retness is straightforward and sine the language we use to express the produed algorithmsshould not lead to any (unintentional) mistranslation from algorithm to ode, we believethat the oupled system leads to programs whose orretness follows from a mathematialderivation of the algorithm.2.7 LU Fatorization with Partial PivotingWe now demonstrate that the tehniques that we introdued using the example of LUfatorization without pivoting are also appliable to the ase of LU fatorization with partialpivoting. The latter algorithm is the one ommonly implemented, but involves ompliationsthat have traditionally made its derivation oding a more intriate and time-onsumingproedure.2.7.1 NotationLet Im denote the m�m identity matrix and ~Pm(i) be the m�m permutation matrix suhthat ~Pm(i)A only swaps the �rst and ith rows of A. Here, we onsider an m�n matrix, A,where m � n and de�nePm(p0; p1; � � � ; pk�1) = � Ik�1 00 ~Pm�k+1(pk�1) � � � �� I1 00 ~Pm�1(p1) � ~Pm(p0)and Pm;i:j = Pm(pi; : : : ; pj). Here pk equals the index, relative to the top row of the urrentlyative matrix (ABR in previous disussions), of the row that is swapped at the kth step ofLU fatorization with partial pivoting. Thus Pm(p0; p1; � � � ; pk�1)A equals the matrix thatresults after swapping rows 0 and p0 followed by swapping rows 1 and p1 + 1, et., in that36
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order. Also, Pm;i:jA equals the matrix that results after swapping rows i and pi followed byi+ 1 and pi+1 + 1, et., in that order.It is well-known that LU fatorization with partial pivoting produes the LU fa-torization Pm;0:n�1A = LU (2.8)2.7.2 Derivation of the invariantsNow, let us examine the possible ontents of matrix ~Ak = PA, where P = Pm;0:k�1, thematrix as it has been overwritten partially into the LU fatorization with partial pivoting.Equation 2.8 is equivalent to  Ik 00 Pm�k;k:n�1 ! ~Ak = LUor ~Ak =  Ik 00 QT !LUwhere Q = Pm�k;k:n�1Partitioning~Ak =  ~A(k)TL ~A(k)TR~A(k)BL ~A(k)BR ! ; L =  L(k)TL 0L(k)BL L(k)BR ! ; and U =  U (k)TL U (k)TR0 U (k)BR ! ;we �nd that ~A(k)TL ~A(k)TR~A(k)BL ~A(k)BR ! =  Ik 00 QT ! L(k)TL 0L(k)BL L(k)BR ! U (k)TL U (k)TR0 U (k)BR !=  L(k)TLU (k)TL L(k)TLU (k)TR~L(k)BLU (k)TL ~L(k)BLU (k)TR + ~L(k)BRU (k)BR !where LBL = Q~L(k)BL and LBR = Q~L(k)BR. Thus, for 0 � k < n, the equalities in Equa-tions 2.1{2.4 must again hold, exept that L(k)BL, L(k)BR, and A(k), are now replaed by ~L(k)BL,~L(k)BR, and ~A(k), respetively. We mention, as before, that unaented submatries of L andU denote �nal values. As for LU fatorization without pivoting, di�erent onditions on theontents of Âk logially ditate di�erent variants for omputing the LU fatorization withpartial pivoting. These are given in Table 2.1, with the provisos mentioned above. Notiethat in addition, a neessary ondition is that p0; : : : ; pk�1 have been omputed.The seond and third onditions listed in Table 2.1 are impratial sine the om-putation of p0; : : : ; pk�1 requires that the entries of L(k)BL be omputed. By taking entries 4through 6, listed in Table 2.1, together with the requirement that p0; : : : ; pk�1 have been37
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omputed, and using them as part of prediate P , three di�erent variants for LU fator-ization with partial pivoting an be derived. These onditions again lead to olumn-lazy(left-looking), row-olumn-lazy (Crout), and eager (right-looking) variants, respetively, thistime with partial pivoting inorporated.2.7.3 Derivation of the eager algorithmLet us onentrate on the eager algorithm. Notie, our assumption is that Âk holdsÂk =  LnU(k)TL U (k)TR~L(k)BL Â(k)BR ! = 0B� LnU (k)00 U (k)01 U (k)02~L(k)10 ~A(k)11 � ~L(k)10 U (k)01 ~A(k)12 � ~L(k)10 U (k)02~L(k)20 ~A(k)21 � ~L(k)20 U (k)01 ~A(k)22 � ~L(k)20 U (k)02 1CA :The desired ontents of Âk+b are given byÂk+b =  LnU(k+b)TL U (k+b)TR�L(k+b)BL Â(k+b)BR != 0B� LnU (k)00 U (k)01 U (k)02L(k)10 LnU (k)11 U (k)12�L(k)20 �L(k)21 �A(k)22 � �L(k)20 U (k)02 � �L(k)21 U (k)12 1CAwhere, Q1 = Pm�k;k:k+b�1, �A(k)BR = Q1 ~A(k)BR, and  �L(k)10�L(k)20 !  Q1 ~L(k)10~L(k)20 !. Note thatLnU (k)11 and L(k)21 are de�ned by Equation 2.9, below, and L(k)10 = �L(k)10 .With some e�ort it an be veri�ed that the following updates have the desired e�et:� Compute Q1, given by fpk; : : : ; pk+b�1g, L(k)11 , U (k)11 , and �L(k)21 suh that Â(k)11Â(k)21 ! =  L(k)11�L(k)21 !U (k)11 (2.9)overwriting  Â(k)11Â(k)21 !  LnU (k)11�L(k)21 !� Permute and overwrite:  Â(k)10Â(k)20 ! Q1 ~L(k)10~L(k)20 !.� Permute and overwrite:  Â(k)12Â(k)22 ! Q1 Â(k)12Â(k)22 !.� Update Â(k)12  U (k)12 = L�1(k)11 Â(k)12 and Â(k)22  Â(k)22 � �L(k)21 U (k)12 .38
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Partition A = � ATL ATRABL ABR � and p = � pTpB �where ATL is 0� 0 and pT has 0 elementsdo until ABR is 0� 0Determine blok size bPartition� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !where A11 is b� bPartition� pTpB �= p0p1p2 !where p1 has b elementsPartitionABR = � A(1)BR A(2)BR �where A(1)BR has width b.hA(1)BR; p1i h� LnU11L21 � ; p1i = LUpiv(A(1)BR)ABL  P (p1)ABLA(2)BR  P (p1)A(2)BRA12  U12 = L�111 A12A22  A22 � L21U12Continue with� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !� pTpB �= p0p1p2 !enddoFigure 2.8: Eager bloked LU fatorization with partial pivoting.
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1 void FLA_LU( FLA_Obj A, FLA_Obj ipiv, int nb_alg )2 {3 < delarations >45 FLA_Part_2x2( A, &ATL, /**/ &ATR,6 /* ************** */7 &ABL, /**/ &ABR,8 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL );9 FLA_Part_2x1( ipiv, &ipivT,10 /* ****** */11 &ipivB,12 /* with */ 0, /* length submatrix */ FLA_TOP );1314 while (b = min(min( FLA_Obj_length(ABR), FLA_Obj_width(ABR)), nb_alg))15 {16 FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, /**/ &A01, &A02,17 /* ************* */ /* ********************* */18 /**/ &A10, /**/ &A11, &A12,19 ABL, /**/ ABR, &A20, /**/ &A21, &A22,20 /* with */ b, /* by */ b, /* A11 split from */ FLA_BR );21 FLA_Repart_2x1_to_3x1( ipivT, &ipiv0,22 /* ***** */ /* ***** */23 &ipiv1,24 ipivB, &ipiv2,25 /* with */ b, /* length ipiv1 split from */ FLA_BOTTOM );26 FLA_Part_1x2( ABR, &ABR_1, &ABR_2,27 /* with */ b, /* width submatrix */ FLA_LEFT );28 /*************************************************************************/2930 if ( nb_alg <= 4 ) FLA_LU_level2(ABR_1, ipiv1);31 else FLA_LU (ABR_1, ipiv1, nb_alg/2);3233 FLA_Apply_pivots(FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipiv1, ABL);34 FLA_Apply_pivots(FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipiv1, ABR_2);35 FLA_Trsm(FLA_SIDE_LEFT, FLA_LOWER_TRIANGULAR,36 FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,37 ONE, A11, A12);38 FLA_Gemm(FLA_NO_TRANSPOSE,FLA_NO_TRANSPOSE, MINUS_ONE,A21,A12,ONE,A22);3940 /*************************************************************************/41 FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, A01, /**/ A02,42 /**/ A10, A11, /**/ A12,43 /* ************** */ /* ****************** */44 &ABL, /**/ &ABR, A20, A21, /**/ A22,45 /* with A11 added to submatrix */ FLA_TL );46 FLA_Cont_with_3x1_to_2x1( &ipivT, ipiv0,47 ipiv1,48 /* ***** */ /* ***** */49 &ipivB, ipiv2,50 /* with ipiv1 added to */ FLA_TOP );51 }52 } Figure 2.9: FLAME reursive LU fatorization with partial pivoting.
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In Fig. 2.8 we show how an eager bloked LU fatorization with partial pivotingan be expressed in our algorithmi format. In this algorithm, the operation LUpiv(B)returns the result of an LU fatorization with partial pivoting of matrix B, as well as thepivot indies. In that �gure, p1 is a vetor of pivot indies and P (p1) takes the plae ofPm�k;k:k+b�1.An unbloked algorithm results when the blok size, b, is always hosen to equalunity. In this ase, the operationhA(1)BR; p1i " LnU11L21 ! ; p1# = LUpiv(A(1)BR) (2.10)is replaed by a determination of the index of the element in vetor A(1)BR, followed by a swapof that element with the �rst element of that vetor, and �nally a saling of the elements ofA21 by 1=A11. (Notie that now A21 is a vetor and A11 is a salar.) In other words, theoperation in Equation 2.10 is replaed byChoose p1 s.t. j hA(1)BRip1 j = maxi j hA(1)BRii jSwap hA(1)BRi1 $ hA(1)BRip1A21  L21 = A21=A11Here [x℄i indiates the ith element of vetor x. It is important to realize that multiplepartitionings of the same matrix referene the same data. Thus after swapping the elementsof A(1)BR, A11 ontains what was hA(1)BRip1 before the swap.2.7.4 ImplementationA FLAME implementation of the bloked algorithm in Fig. 2.8 is given in Fig. 2.9. Notiethat a FLAME implementation of the unbloked algorithm would look similar. Let usassume that the latter is orretly implemented in the FLAME routinevoid FLA_LU_level2( FLA_Obj A, FLA_Obj ipiv )Now, the orretness of algorithm in Fig. 2.8 depends only on the orretness of the LUfatorization with partial pivoting of A(1)BR and the other operation. Thus, there is theoption of implementing the LU fatorization of the panel A(1)BR as a reursive all to thegiven routine (line 31). Only when the panel beomes very small is a routine that useslevel-2 BLAS (matrix-vetor omputations) alled (line 30).Notie that the implementation is very exible in that it is neither purely reursivenor purely iterative. By playing with the algorithmi blok size b (nb alg), one an attain apurely reursive algorithm (when b = n=2 for an m�n input matrix A), purely iterative (byalways alling FLA LU level2 for the subproblem) or an iterative algorithm that reursivelyalls itself. An indution on the level of the reursion would establish the orretness of thegiven ode. A more detailed disussion on the orretness of reursively formulated linearalgebra algorithms an be found in [49, 29℄. 41
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SYMM C  �(L+ L̂T )B + �C C  �(U + ÛT )B + �CC  �B(L+ L̂T ) + �C C  �B(U + ÛT ) + �CSYRK lo(C) �lo(AAT ) + �lo(C) up(C) �up(AAT ) + �up(C)lo(C) �lo(ATA) + �lo(C) up(C) �up(ATA) + �up(C)SYR2K lo(C) �lo(ABT +BAT ) + �lo(C) up(C) �up(ABT +BAT ) + �up(C)lo(C) �lo(ATB +BTA) + �lo(C) up(C) �up(ATB +BTA) + �up(C)TRMM B  �LB B  �LTB B  �UB B  �UTBB  �BL B  �BLT B  �BU B  �BUTTRSM B  �L�1B B  �L�TB B  �U�1B B  �U�TBB  �BL�1 B  �BL�T B  �BU�1 B  �BU�TFigure 2.10: Level-3 BLAS operations implemented as part of the produtivity experiment.2.8 ExperimentsIn this setion, we report the results of three di�erent experiment. The �rst measures the im-pat that the FLAME approah has on produtivity. The seond experiment demonstratesFLAME make the implementation of high-performane linear algebra algorithms more a-essible to novies. In the �nal experiment we demonstrate that the attained performaneis superb.2.8.1 Produtivity experimentAs an experiment to measure, albeit roughly, the degree to whih FLAME redues odedevelopment time, one of the authors implemented all level-3 BLAS operations given inFig. 2.10 in terms of matrix-matrix multipliation. This exerise an easily require monthsto omplete, even by a programmer who is experiened in the implementation of suh oper-ations. This inludes time spent on extensive testing of orretness of the implementations.The entire library of operations was ompleted using FLAME in a matter of about tenhours, inluding testing. As of this writing, we have used the resulting library for aboutnine months without enountering a bug in the implementations. The resulting ode isinluded on the FLAME webpage given at the end of this paper. The prototype imple-mentation of FLAME required to support the implementations of the level-3 BLAS tookapproximately one man-week.It should be noted that the number of lines of ode required for the implementationis not neessarily less than that required for a more onventional implementation. This isalready evident when onsidering Figs. 2.5 and 2.7. However, the e�ort is greatly reduedby the fat that the subroutines for the di�erent operations use similar ode skeletons.Moreover, we believe that the resulting ode is substantially more readable.
42
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2.8.2 Aessibility experimentIt is our laim that the FLAME approah to the derivation and implementation of linearalgebra algorithms greatly simpli�es the development of linear algebra libraries. To demon-strate this, we handed a reipe for deriving algorithms, similar to the one in Setion 2.5,to a lass of omputer siene undergraduates at UT-Austin. These students had a limitedbakground in linear algebra and essentially no bakground in high-performane omput-ing. Using the FLAME approah they implemented bloked algorithms for linear algebraoperations that are part of the level-3 BLAS. The results of this experiments an be foundin [43℄.2.8.3 Performane experimentTo illustrate that orretness, simpliity and modularity does not neessarily ome at theexpense of performane, we measured the performane of the LU fatorization with pivotinggiven in Fig. 2.9 followed by forward and bakward substitution, i.e., essentially the LIN-PACK benhmark. For omparison, we also measured the performane of the equivalentoperations provided by ATLAS R3.2 [76℄.Some details: Performane was measured on an Intel (R) Pentium (R) III proessor-based laptop with a 256K L2 ahe running the Linux (Red Hat 6.2) operating system. Allomputations were performed in 64-bit (double preision) arithmeti. For both implemen-tations the same ompiler options were used.In Fig. 2.11 we report performane for four di�erent implementations, indiated bythe urves markedATLAS: This urve reports performane for the LU fatorization provided by ATLAS R3.2,using the BLAS provided by ATLAS R3.2.ATL-FLAME: This urve reports the performane of our LU fatorization oded using FLAMEwith BLAS provided by ATLAS R3.2. The outer-most blok size used for the LU fa-torization is 160 for these measurements. (Notie that multiples of 40 are optimal forthe ATLAS matrix-matrix multiply on this arhiteture.)ITX-FLAME: Same as the previous implementation, exept that we provided our own op-timized matrix-matrix multiply (ITXGEMM). Details of this optimization are thesubjet of another paper [42℄. This time the outer-most blok size was 128. (No-tie that multiples of 64 are optimal for the ITXGEMM matrix-matrix multipliationroutine on this arhiteture.)ITX-FLAME-opt: Same as the ITX-FLAME implementation, exept that we optimized thelevel-2 BLAS based LU fatorization of an intermediate panel as well as the pivotroutine by not using the high-level FLAME approah for those operations. For theseroutines we all DSCAL, DGER, and DSWAP diretly.For all implementations, the forward and bakward substitutions are provided by the ATLASR3.2 DTRSV routine. 43
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Figure 2.11: Performane of LU fatorization with pivoting followed by forward and bak-ward substitution.Notie that for small matries the performane of ATL-FLAME is somewhat inferior tothat of ATLAS, due to the overhead for manipulating the objets that enode the informa-tion about the matries. This is due to the fat that this manipulation of objets introduesan O(n) overhead whih is amortized over a omputational ost that is O(n3). When thelevel-2 BLAS based LU fatorization is oded without this overhead, the performane isomparable for small matries. The performane boost witnessed when the ITXGEMMmatrix-matrix multiply kernel is used is entirely due to the superior performane of thatkernel, relative to the ATLAS DGEMM implementation.It is important to realize that the performane di�erene between the implementa-tion o�ered as part of ATLAS R3.2 and our own implementation is not the point of thisperformane omparison or, more generally, of this paper. With some e�ort either imple-mentation an be improved to math the performane of the other. Our primary point isthat FLAME enables one to expend markedly less time to implement these algorithms ina provably orret manner. At the same time, the resulting implementation attains perfor-44
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mane omparable to that of, what are widely onsidered to be, standard high-performaneimplementations.2.9 Related WorkLibraries for dense linear algebra operations have often led advanes in software engineeringfor sienti� appliations. The �rst suh pakage to ahieve widespread use and to embodynew tehniques in software engineering was EISPACK [68℄. EISPACK was also likely the�rst suh pakage to pay areful attention to the numerial stability of the underlying algo-rithms. The mid-1970s witnessed the introdution of the Basi Linear Algebra Subprograms(BLAS) [55℄. At that time, the BLAS were a set of vetor operations that allowed libraries toattain high performane on vetor superomputers while remaining highly portable betweenplatforms, simultaneously enhaning modularity and ode readability. The �rst suessfullibrary to exploit these BLAS was LINPACK [22℄. By the mid-1980s, it was reognizedthat in order to overome the gap between proessor and memory performane on modernmiroproessors it was neessary to reformulate matrix operations in terms of matrix-matrixmultipliation-like operations, the level-3 BLAS [25℄. LAPACK [5℄, �rst released in the early1990s, is a high-performane pakage for linear algebra operations written in terms of thelevel-3 BLAS. LAPACK o�ers a funtionality that is a super set of LINPACK and EIS-PACK while ahieving high performane on essentially all sequential and shared-memoryarhitetures in a portable fashion.A major simpli�ation in the implementation of the level-3 BLAS themselves amefrom the observation that they an be ast in terms of optimized matrix-matrix multipli-ation [1, 47, 52℄. Further, the performane of the resulting more portable system wasomparable to the vendor-supplied BLAS in many ases.With the advent of distributed-memory parallel arhitetures, a parallel versionof LAPACK, SaLAPACK [15℄, was developed. A major design goal of the SaLAPACKprojet was to preserve and re-use as muh ode from LAPACK as possible. Thus, all layersin the SaLAPACK software arhiteture are designed to resemble similar layers in theLAPACK software arhiteture. It was this deision that ompliated the implementationof SaLAPACK. The introdution of data distribution (aross memories) reates a problemanalogous to that of reating and maintaining the data strutures required for storing sparsematries. The mapping from indies to matrix element(s) was no longer a simple one.Combining this ompliation with the monolithi struture of the software led to ode thatwas laborious to onstrut and is diÆult to maintain. Our own Parallel Linear AlgebraPakage (PLAPACK) ahieves a funtionality similar to that of SaLAPACK, targeting thesame distributed-memory arhitetures while using a FLAME-like approah to hide detailsrelated to indexing into and distribution of matries [74℄. Indeed, the primary inspirationfor FLAME ame from PLAPACK.A number of reent e�orts have explored the notion of utilizing hierarhial datastrutures for storing matries [4, 46, 48℄. The entral idea is that, by storing matries bybloks rather than by row- or olumn-major ordering, data preparation (opying) for good45
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ahe re-use is virtually eliminated. Combining this with reursive algorithms that exploitthis data struture, impressive performane improvements have been demonstrated. Notiethat more omplex data strutures for sequential algorithms introdue a omplexity similarto that enountered when data is distributed to the memories of a distributed-memoryarhiteture. Sine PLAPACK e�etively addressed that problem for those arhitetures,we have strong evidene that FLAMBE an be extended to aommodate more omplexdata strutures in the ontext of hierarhial memories.2.10 Chapter SummaryA olleague of ours, Dr. Timothy Mattson of Intel, reently made the following observation:\Literature professors read literature. Computer Siene professors should, at least oa-sionally, read ode." When one does this, ertain patterns emerge and one tends to beomemore readily able to distinguish good ode from bad.In this hapter, we have illustrated that a more formal approah to the designof matrix algorithms, ombined with the right level of abstration for oding, leads to asoftware arhiteture for linear algebra libraries that is dramatially di�erent from the onethat resulted from the more traditional approahes used by pakages suh as LINPACK,LAPACK, and SaLAPACK. The approah is suh that the library developer is fored togive areful attention to the derivation of the algorithm. The bene�t is that the ode is adiret translation of the resulting algorithm, reduing opportunities for the introdution ofommon bugs related to indexing. Our experiene shows that there is no signi�ant lossof performane. Indeed, sine more variants for a given operation an now be more easilydeveloped we often observe a performane bene�t from the approah.Let us again examine the observations of Dijkstra:(i) When exhaustive testing is impossible {i.e., almost always{ our trust an onlybe based on proof (be it mehanized or not).(ii) A program for whih it is not lear why we should trust it, is of dubiousvalue.In this hapter, and through years of experiene writing parallel linear algebra libraries, wehave learned this lesson the hard way. While a large perentage of ode and an even largerperentage of e�ort was devoted to the development of test ode for pakages like LAPACKand SaLAPACK, we believe that the more formal and systemati approah that under-lies FLAMBE and PLAPACK has redued the need for suh testing, while simultaneouslyinreasing our on�dene in the implementation.(iv) Given the proof, deriving a program justi�ed by it, is muh easier than,given the program, onstruting a proof justifying it.Notie that our approah arefully derives the program, making the proof of its orretnessan inherent part of its derivation. 46
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(iii) A program should be strutured in suh a way that the argument for itsorretness is feasible and not unneessarily laborious.Sine the ode reets the algorithm, the argument that the algorithm is orret arries overto an argument that the ode is orret.Throughout this hapter we have foused on the orretness of the algorithm. This isnot the same as proving that the algorithm is numerially stable. While we do not laim thatour methodology automatially generates stable algorithms, we do laim that the skeletonused to express the algorithm, and to implement the ode, an be used to implement knownalgorithms with known numerial stability properties. It also failitates the disovery andimplementation of new algorithms for whih numerial properties an then be subsequentlyestablished.
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Chapter 3From Variant to MultipleVersionsThis hapter introdues a oding environment that allows the user to implement algorithmsin a higher level language than FLAMBE (seen in Chapter 2). This language, dubbed\PLAWright," is the interfae to the automated system, the PLANALYZER, disussed inthe next three hapters of this dissertation. The reader is referred to Figure 3.1. In this�gure, the automated omponents of this dissertation are depited in an abbreviated form.This hapter fouses on, the \High-level Program," whih is to be input.Subsequent hapters demonstrate that this programming approah does not requireone to forsake performane onsiderations when moving to a omputational environment.In this hapter, the fous is on the high level of abstration in programming whih frees theuser from many low-level onerns. This allows the programmer to utilize algorithms thatbear the promise of inreased performane, but might have been overlooked beause of therequired investment in programming, debugging, and maintenane time and e�ort [7℄.3.1 MotivationThere are a number of reasons to adopt the oding style delineated in this hapter. Some ofthose motivating fators present themselves in the ontext of sequential systems while othersare made apparent only when distributed omputational environments are onsidered. Theissues and diÆulties assoiated with traditional approahes are disussed here along withan overview of the solution advoated in this work.3.1.1 Coding Matrix Algorithms: The Sequential WorldThere are two traditional strategies for oding sequential matrix algorithms:1. Simple indexing into the original array [22℄ and48
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Figure 3.1: Overview of the PLANALYZER2. Indexing ombined with a standard library supplying omputational kernels [5℄ suhas the Basi Linear Algebra Subprograms (BLAS) [26, 25℄.Problems with Traditional ApproahesAs has been mentioned, both of these approahes share the same shortomings. Both ap-proahes require that one keep trak of where in the matries the omputations are ourring.The amount of bookkeeping required to do this as algorithms beome more sophistiatedis daunting and error-prone. In order to avoid mounting design and maintenane osts,algorithms that are more ambitious are often abandoned for this reason.Notie that the original derivation of these algorithms does not involve these indies.It is the attempt to mesh two ways of viewing matries that appears to ause the problem.3.1.2 Coding Matrix Algorithms: Extending to ParallelTraditionally, extending a library [15℄ or an integrated development environment [72℄ to aparallel environment has involved the goal of maximizing ode re-use. Some newer softwaresystems [19℄ appear to view this goal as seondary and they provide some tools for theintegration of alien modules.In ontrast, software systems with a more oherent \vision," suh as PETS [9℄ andPLAPACK [74℄, take a more uni�ed view of the omputational environment and present the49
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user with a library that has a more onsistent interfae. These libraries also avoid the pitfallof hiding parallelism in order to avoid added omplexity. They expose levels of parallelismto the algorithmi designer in a exible manner [8℄.Problems with Traditional ApproahesWhile the re-use of existing library omponents is a laudable goal, we think that it isunneessarily onstriting. For example, the SaLAPACK projet [15℄ attempts to makemaximal re-use of LAPACK [5℄ omponents. This approah fores one to view parallelomputational systems as vastly more omplex than sequential systems. While it is truethat suh arhitetures are somewhat more ompliated, it is the adaptation of sequentiallibraries to parallel environments that auses many programming errors. The troublesomeartifats of suh adaptation inlude lengthening parameter lists and poorly doumentedinterations between levels of both hardware and software.The seond error that an be seen in the design of some of these software pakagesis an unfortunate oupling of omputation and ommuniation libraries. An example isSaLAPACK's initial oupling with the Basi Linear Algebra Communiation Subprograms(BLACS) [6℄ routines. While part of the problem rested in the non-modular nature of suh atightly-oupled arrangement, a more profound penalty is inurred by the limited breadth ofabstration. Some ommuniations patterns that are not supported by the BLACS libraryarise naturally in parallel linear algebra routines. An example is the BLACS library'sinability to redistribute an n� 1 matrix objet aross the entire proessor grid (i.e. viewthe grid as a linear proessor array). This operation is often important for load-balane inlinear algebra solver algorithms [28℄.3.1.3 Proposed SolutionIf the soure of the problem is the interation between design systems and abstration setsthat are inompatible, it makes sense to eliminate this onit. The development of anabstration set that reets the derivation of the algorithms an minimize the severity ofthis onit.The proposed solution for addressing the diÆulties in the parallel environment isto ouple the philosophy of libraries, suh as PLAPACK, with the ease of programmingavailable in environments suh as the one provided by MATLAB [58℄. This allows the userto exploit or insulate themselves from the details of the parallel programming environment.Allowing the user to ode in this manner is not only easier on the user, but allows the userto implement algorithms that are more sophistiated.Chapter 2 demonstrated that the goal of oupling the design system and the ab-stration set available to the implementor is ahievable using onventional languages. Giventhe initial derivation, and the problems expounded above, it seems that many of the prob-lems enountered ould be obviated if one were allowed to ode in a format suh as theone depited in Figure 3.2. The same sript may be translated into ode that operates on asingle proessor or into ode that operates on multiple proessors. In this ase, the eÆieny50
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of the resulting ode relies on the sophistiation of the translator and the underlying library.In addition, as is disussed in Setion 3.1.4, the same software system allows the user toimplement both other variants (Figure 3.3) of the algorithm as well as speialized versions(Figure 3.4) while programming in the same style.1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ; // (* Same as non-unit *)3 A has_property square ; // (* Atually, Square here *)4 L === A ; // {Reursive} {Permanent} (* Establish name equivalene *)5 U === A ; // {Reursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is loal and19 A11 is loally square and20 A11 is nb by nb ; // No larger than is implied21 A01 = U01 <- L00^-1 * A01 ;22 A10 = L10 <- A10 * U00^-1 ;23 A11 = (L11\U11) <- A11 - L10 * U01 ;24 A11 = (L11\U11) <- lu_fat(A11) ;25 partition26 / ATL # ATR \27 |###########|28 \ ABL # ABR / <= / A00 | A01 # A02 \29 |------------------|30 | A10 | A11 # A12 |31 |##################|32 \ A20 | A21 # A22 / ;33 enddo;34 L =!= A;35 U =!= A;Figure 3.2: Computer-readable sript for Lazy version of LU fatorizationNotie that both Figure 3.3 and Figure 3.4 illustrate the exeutable form of the Eagerversion of the LU deomposition. While both �gures orrespond to the algorithm presentedin Figure 2.3 (a) on page 27, the latter is not a \vanilla" form of the variant. It is whatI refer to as a version of that variant; in this ase, the version is only slightly speialized.This version ontains a diretive intended to result in data loality in a distributed-memoryomputational environment. A disussion regarding the import of suh speializations isdelayed until Chapter 4. 51
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1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ;4 L === A ; // {Reursive} {Permanent} (* Establish name equivalene *)5 U === A ; // {Reursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is nb by nb ; // No larger than is implied19 A11 = (L11\U11) <- lu_fat(A11) ;20 A12 = U12 <- L11^-1 * A12 ;21 A21 = L21 <- A21 * U11^-1 ;22 A22 <- A22 - L21 * U12 ;23 partition24 / ATL # ATR \25 |###########|26 \ ABL # ABR / <= / A00 | A01 # A02 \27 |------------------|28 | A10 | A11 # A12 |29 |##################|30 \ A20 | A21 # A22 / ;31 enddo;32 L =!= A;33 U =!= A;Figure 3.3: Computer-readable/PLAWright-ompilable sript for the Eager variant of LUfatorization
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1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ; // (* Atually, Square here *)4 L === A ; // {Reursive} {Permanent} (* Establish name equivalene *)5 U === A ; // {Reursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is loal and19 A11 is loally square and20 A11 is nb by nb ; // No larger than is implied2122 A11 = (L11\U11) <- lu_fat(A11) ;23 A12 = U12 <- L11^-1 * A12 ;24 A21 = L21 <- A21 * U11^-1 ;25 A22 <- A22 - L21 * U12 ;26 partition27 / ATL # ATR \28 |###########|29 \ ABL # ABR / <= / A00 | A01 # A02 \30 |------------------|31 | A10 | A11 # A12 |32 |##################|33 \ A20 | A21 # A22 / ;34 enddo;35 L =!= A;36 U =!= A; Figure 3.4: Sript for Eager version of parallel LU fatorization
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Figure 3.5: Where PLAWright �ts into the \grand sheme" of things.3.1.4 Where PLAWright Fits InLet us reonsider Figure 1.1, the \Big Piture" illustrated on page 5 of Chapter 1. Whilethe FLAME development methodology is systemati, it is not automated. Therefore, thereis something of a ognitive break between FLAME and the remainder of the programmingenvironment disussed in this dissertation. After the variants are produed by the FLAMEmethodology, the proess is entirely mehanized. The PLAWright Composer marks thepoint of demaration between systematization and mehanization.Automation is desirable in this area beause it allows the programmer to fous theire�orts on reating algorithms instead of translating these algorithms into ode. PLAWrightallows the user to produe versions of the di�erent oding variants (see Figure 3.5, ahead).The language also serves to enfore some level of programming disipline. This disiplineomes about beause the language of the sripts has a syntax that an be expressed interms of a ontext-free-grammar (CFG). In our implementation, the CFG is enoded in thelanguage of the ANTLR [61, 62℄ ompiler tool.3.2 IssuesThere are a number of onsiderations that a�et the design of a domain-spei� language.The language should apture the entral abstrations involved in the domain, retain somelevel of exibility and extensibility, and be of a form that an be automatially translatedinto an exeutable. In this setion we disuss these issues.54
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3.2.1 AbstrationEase-of-use is an important property in a linear algebra library. Unfortunately, this propertyhas often been either ignored or relegated to a position of minor importane. On the onehand, the reason for this is simple and not, entirely, inorret: performane is important.People do not use a \friendly" appliation library for ode-development if its performaneharateristis are unaeptably poor. On the other hand, people like to use suh program-ming environments (e.g. MATLAB) for proof-of-onept designs. Therefore, it makes senseto utilize multiple levels of abstration in a mathematial library.Suh levels, optimally, present a somewhat uni�ed interfae to the library user.However, it is often the ase that di�erent levels in suh a library annot be ompletely on-gruent [15℄ in that they annot all take the same arguments or argument types. Nonetheless,it is usually possible to present the user with understandable \variations on a theme" inthese ases if one starts with a systemati approah to the entire library.Why Level Consisteny Is ImportantAn important omponent of the systemati approah that enables this onsisteny betweenprogramming layers lies in the devising of a set of useful abstrations to desribe the algo-rithms under onsideration. Seleting the right abstrations gives one the ability to expressalgorithms in a ompat and understandable manner. Further, it allows for a onsistentvoabulary when disussing algorithms at various levels of detail.Important ConeptsBeause this dissertation largely ignores issues of memory hierarhy until Chapter 5 (seepage 64), it should ome as no surprise that there are few general abstrations involved indesigning dense linear algebra algorithms. Only three appear neessary for our purposes.Objet manipulation and (data) omponent omputation are required in the previouslypresented algorithms. Objet property transformations are somewhat hidden, but are alsoneessary. Here, the terms objet and omponent have di�erent meanings. An objetinludes both the data omponent and the other properties of the operand (e.g. size).The omponent is the raw data on whih mathematial operations are performed. Themanipulation of and omputation on objets inuenes the orresponding properties of thoseobjets. Thus, one ould onsider a omputation to involve the entire objet. The problemwith this view is that the property omputations are of a very di�erent nature than the dataomputations. Further, the data omputations are well understood; while, traditionally, theproperty transforms have been either ignored or made almost entirely impliit. Chapter 4,whih deals with automati ode generation (and speialization) presents a ase for makingthese property transformations expliit.For a onrete example that involves these issues, let us onsider the Eager variantof LU-deomposition that is illustrated in Figure 3.6:The entire algorithm relies upon two things:55
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partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0repartition� ATL ATRABL ABR � = 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Awhere A11 is nb by nbA11  LU fat.(A11)A12  U12 = L�111 A12A21  L21 = A21U�111A22  A22 � L21U12ontinue with� ATL ATRABL ABR � = 0� A00 A01 A02A10 A11 A12A20 A21 A22 1Aenddo Figure 3.6: Eager approah to LU fatorization (paraphrased)1. How to delimit a blok of an operand and2. The manner in whih these operand bloks interatI think that this �gure depits a natural way to express suh an algorithm. However,as I restrit the programming environment to the ASCII domain, the goal of this work isto allow the input form to math that illustrated in Figure 3.3. The following setionsdemonstrate how this goal an be ahieved in an implementation.Objet Manipulation Linear algebra routines typially involve matries, vetors, andsalars. The number of operands involved in an algorithm depends upon the algorithm underonsideration. The \nature" of suh objets inludes their instantiation and individuality.For example, in the LU deomposition there are oneptually three objets, all matries,A, L, and U . A is instantiated (has size, values et.) when routine begins, while L andU are not. Also, while we may onsider the three matries to be distint entities for thepurposes of deriving equations, the algorithms shown in Chapter 2 were omposed underthe restrition that L and U overwrote A as the algorithms progressed. This o-loation ofdata inuenes the manner in whih algorithms are onstruted.These issues motivate all of the objet manipulation primitives that are required forthe subset of dense linear algebra algorithms under onsideration in this doument. Therest of this setion examines the manipulators needed. Although objet properties, suhas being lower-triangular, may be a�eted by both manipulation and omputation they56
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are onsidered a separate abstration and not as a faet of either the other two nor as anemergent artifat of their interation.The �rst abstration needed is o-referene to an existing objet. While other ma-nipulations an be \abused" to yield this operation, our goal here is not the onstrutionof a minimal set of primitives, but the reation of a small and useful set. The need of thisoperation ours at the very beginning of the LU deomposition algorithm and is relatedto the previously disussed o-loation property. The LU algorithm begins with a singlematrix, A, that is to be fatored into two matries L and U . Beause L and U eventuallyoupy the same spae as A, the logial thing to do is to view A as sharing omponentswith L and U .The next manipulator to be onsidered is the one that performs (re-)partitioning.After we have all of the objets that we need to arry out the algorithm, we need to beable to refer to di�erent subsets of the objets. In the ases presented in this dissertation,the situation is even simpler, as we wish to be able to \name" only ontiguous parts of thedata omponents of the objets under onsideration. Beause we may begin with a two-dimensional matrix and wish to onsider a two-dimensional submatrix of the same objet,it seems that two abstrations are required: splitting the objet vertially and splitting theobjet horizontally. In addition to the diretion of the split, the size of the resulting objetwould also need to be spei�ed in the realization of this abstration. Further, if a matrixan be deomposed through splitting, we should also have the ability to ombine parts of amatrix, or vetor, in order to reate a new objet.Clari�ation and Justi�ation There are some unanswered questions regarding theabstrations given above. Some of these ambiguities involve the issue of o-referene. The�nal question onerns the diretion of assignment involved in eah type of abstration.In Figure 3.3 we fored L to o-referene A. This has the same outome as splittingA into some number of objets where all but one of the objets has a nil size (0� 0). Whilesuh a split is valid, there is a drawbak to this approah: it does not math the algorithmsas they were presented in Chapter 2. Also, while it is true that the algorithms ould be re-written to use this \zero-split" o-referene, it is our ontention that this would be somewhatless intuitive than the alternative.Another o-referene ambiguity involves the sope of the operations and onditions.Consider that we state that L o-refers to (the lower-triangular part of) A. While it doesnot arise in the presented algorithm, we may later wish to partition L in one way and A inanother. The language used must provide some way to distinguish between permanent andtemporary o-referenes. In PLAWright, the syntati distintion involves the use of === toindiate a \loked," reursive equality and == to indiate a temporary equality.Issues regarding the \diretion" of assignments must also be onsidered. For exam-ple, if we were to employ A = L notation, it would be apparent that A was being assigned toL, as L was assumed to be non-instantiated. In order to make the semantis of the languageunambiguous in this regard there are at least three possibilities:1. Rely on input spei�ations to indiate whih objets are initialized.57
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2. Use positional queues. For example, in C, the line X = Y; unambiguously means thatY should be assigned to X. or3. Use operational queues (e.g. Y ) X and X ( Y would both assign Y to X).The �rst option is undesirable beause assignment may involve two initialized objets, or,in the ase of an assigment that involved omposition, groups of objets. Therefore, weeliminate the �rst option from onsideration. There seems to be no ompelling reason tofavor either of the other two onventions. While the third allows smaller syntati alterationsto the algorithmi desription to disambiguate the meaning of the ode, one might reasonablyargue that the seond alternative yields leaner ode. In any ase, we adopt the thirdalternative as the onvention in this dissertation and allow = to serve as something of aomment that an be used as an assertion of operand ompatibility.Computation Only three omputational operators are required by the software systemdisussed in this doument. All three were used in the di�erent example derivations of theLU deomposition algorithm: multipliation, (triangular) inversion, and addition.In a linear algebra library, one must expet to perform some form of matrix multi-pliation. This may be a matrix-matrix, a matrix-vetor, or a vetor-vetor multipliation.For the moment, let us only onsider the ases that are well-de�ned. That is, in the asewhere we wish to determine the value of A�B, A is of size m� k and B is of size k � n.In this ase, the primitive used orresponds to the standard matrix-matrix multipliationalgorithm.There are other ases that must be onsidered. The �rst suh ase arises when theoperation is apparently not well-de�ned but one of the operands is a salar (a 1� 1 matrix).This operation needs its own semantis to determine if a given alulation is well-de�ned.Suh an operation is onsidered well-de�ned if the objets involved are initialized. Theother ases that must be onsidered are the result of matrix properties: matrix strutureand transposition status.A linear algebra objet may have many appliable strutural spei�ers. However,only upper- and lower-triangular matries are onsidered in this doument. In both ases,only part of the matrix is onsidered to be de�ned. Operations involving suh objets mustnever refer to (read or write) the unde�ned portion of the objets.Matrix inversion is often required in linear algebra. In the Eager LU deompositionalgorithm presented in this dissertation, it is used to determine A12 where A12 = L�111 A12,for instane.As matrix struture has been onsidered in this setion, it should be pointed outthat the matrix inversion required for the LU algorithm(s) presented here is of a restritedtype: the inversion of a triangular matrix. As a pratial matter, true inversion would notbe performed due to the speial struture of the matrix under onsideration. Instead, theoperation would be implemented as a omputationally less expensive triangular solve. Thedetails are unimportant. The situation is highlighted simply beause it is an illustration ofthe distintion between abstration and implementation.58
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The last two operators, matrix addition and matrix subtration, are so similar that,given the salar multipliation disussed above, only one is required. However, it is easierto disuss the algorithms when both are used, so both are inluded. Both operations arewell-de�ned when both operands are of equal dimensions and have the same struture.Property Manipulations While one may think that the onepts of objet manipulationand omputation have some overlap, this is not the ase in this dissertation. Considerthe preeding setions. Manipulation involved a single data omponent while omputationreferred to objet interation. The barrier between abstration lasses beomes somewhatmore diÆult to draw when one onsiders objet properties.As has been mentioned, properties ould be onsidered as faets of both manipula-tion and omputation. For reasons already disussed, there are bene�ts to viewing them asseparate entities. However, even with this point-of-view in mind, we must not lose sight ofthe fat that both manipulations and omputations an a�et objet properties. Similarly,properties an a�et manipulations and omputations.While there are many potential objet properties, we onsider only a few. In thisdoument, there are only two properties that we onsider when dealing with objets: sizeand shape.The size property spei�es the dimensions of the objet under onsideration. Thisproperty an be used for a number of things. Most fundamentally, it an be used duringthe interation of two objets to determine if the proposed interation is well-de�ned.Shape properties an be used for the same purpose. Here, we onsider only a fewpossible shape (perhaps more properly alled \onstitueny") ategories. Among these are:full, empty, zero, and triangular. Empty is essentially the same as unspei�ed and the \otherhalf" of a triangular objet is treated as unspei�ed (uninitialized) during all omputationalinterations.There are also properties that may not be properly attahed to any one objet.For example, we have already disussed the idea of a o-referene objet manipulation(i.e. establishing objet equivalene). Co-referening an be viewed as a one- or two-wayrelationship. If we view it as a one-way relationship, one objet is \seondary" and theproperty may be attahed to either objet. However, if the relationship is onsidered to betwo-way, there are two hoies:1. The property an be attahed to both objets or2. The objets an be attahed to their mutual relationshipWe adopt the view that the relationship is two-way and the property is attahed to bothobjets.Finally, there is the transposition property to onsider. This property indiateswhether an objet exists in the transposed state, or if an objet is equivalent to the transposeof a seond objet (often, a \parent" objet). While this may arise from a transpositionoperation (a manipulation operation not previously onsidered), they are di�erent thingspreisely beause the property an be attahed to an objet or deleted from that objet's59
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properties regardless of its \true" state. The transposed state hanges the appliability ofthe omputational manipulators in the expeted way.Iterators and Seletors Iteration and seletion are required in any mathematial pro-gramming language. The PLAWright language uses only one iterator :do until <ondition>/enddo.Similarly, there is only one seletor:if<ondition>-then-else,a onstrut that resembles the C or Pasal if-then(-else) operator.In PLAWright, there is a restrition as to what these <ondition>s may ontain.As it is now implemented, the ondition must be related to the properties mentioned above(struture and size).3.2.2 A Domain-Spei� Language for Linear AlgebraThe language presented in this hapter is intended to mirror the algorithms produed whenemploying the FLAME methodology and to allow one to realize, in ode, the abstrationsdisussed in Setion 3.2.1. Largely, it does so suessfully, but the disparities betweenFLAME and PLAWright deserve a bit of exposition. Similarly, as the previous haptermaintained that the FLAMBE oding style enabled ode and algorithm to be virtuallyindistinguishable, the laims made there must be reonsidered.FLAME vs. PLAWrightIn an attempt to allow the novie to reate programs with eÆienies that are lose to thoseprodued by an expert, the �rst step is to allow the novie to program in an environment thatonly requires knowledge of standard linear algebra symbols and a few easily-rememberednotational onventions.Figure 3.3 on page 52 illustrates the simple, \exeutable" format of the Eager versionof the LU deomposition.There are few di�erenes between this sript and the orresponding algorithm pre-sented in the previous hapter. The similarity of the two is primarily the result of thefat that the abstrations were designed around this style of presentation. We would alsomaintain that this style of presentation is a \natural" one and, optimally, the ode shouldonform losely to it. The di�erenes between the two are primarily the result of the fatthat there are a number of impliit assumptions that a human makes or \�gures out;" ourompilation system makes no suh assumptions.The most obvious di�erene is the ASCII-ized nature of the PLAWright language.This dissimilarity exists beause standard ompiler tehnology does not easily lend itself60
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to programming in or interpreting PostSript, the standard form of output for tehnialpapers. Another notable di�erene stems from the need to add ertain properties (via anno-tations) to the o-referene status that needs to be maintained between L, U , and A. Whileit is lear that these names are all to initially refer (in some sense) to the same objet, it isnot neessarily the ase that this property is to be inherited by all named sub-objets (re-ursive) or that the property is never voided (permanent). Beause FLAMBE was writtento respet C and Fortran, this idea of expliit o-referene appeared to be at odds with thephilosophy of the language. The reader may have notied that an analogous disparity existsbetween FLAME and PLAWright, but was not mentioned in Setion 3.2.2. In FLAME theo-referene remains impliit; only in PLAWright does it seem to present itself as a naturalpart of the language.Another disparity involves the addition of \;" (semiolons) to the end of eah om-mand in the PLAWright language. This was done for reasons of expedieny; statementseparators tend to make things learer to translators without having a profound impat onthe readability of the sript. They may even make the sript somewhat easier to read inthe absene of the formatting imposed on Figure 3.3, as whitespae is unimportant to thePLAWright-ompiler. This pratie also tends to allow for the generation of more informa-tive error messages, sine statement and line numbers have unambiguous meaning in thisase. Finally, the reader may have noted the transposition of = and <- between the algo-rithms and the sripts. This was done intentionally in order to point out that suh things areoften a matter of taste and the ompilation system an be altered to suit suh di�ereneswith simple symbol (token) renaming. Here, we have taken ease-of-programming a stepfurther and extended the goal to ease of language extension. Sine the implementation ofthe language relies upon ANTLR ompiler tehnology, allowing suh ustomization seemedneessary and proved to be simple to perform.PLAWright vs. FLAMBEThe PLAWright implementation of Eager LU fatorization is depited in Figure 3.3. ThisFigure bears a strong resemblane to Figure 2.3(a). By way of ontrast, let us onsiderthe expression of the eager LU algorithm as expressed using the FLAMBE system as isseen in Figure 3.7. Great pains have been taken to make the FLAMBE language resembleFLAME's language of algorithmi expression. However, the on�nes of the C programminglanguage neessitated some of the lexial distane between the two expressive forms. Byadding the appropriate omments, as is done in Figure 3.8, one an make the purpose ofthe ode more readily evident. However, the use the PLAWright domain-spei� languageobviates the need for suh omments. The omments in the FLAMBE ode (Figure 3.8) arevirtually idential to the orresponding lines in the PLAWright sript (Figure 3.3).Beause performane is a onsideration, it should be pointed out that the use of suha sript language does not require one to sari�e their quest for stellar performane. In thishapter, the manner in whih the user an speialize the sripts so as to ahieve superior61
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12 void PLA_LU_eager( PLA_Obj A, int nb );3 {4 < delarations >5 PLA_Create_onstants_onf_to( A, &minus_one, NULL, &one );6 PLA_Obj_partition_4( A, &ATL, /**/ &ATR,7 /* ************** */8 &ABL, /**/ &ABR,9 /* with */ 0, /* by */ 0, /* submatrix */ PLA_SUBMATRIX_TL );10 while ( size = PLA_OBJ_GLOBAL_LENGTH( ABR ) ){11 b = min( size, nb );12 PLA_Obj_repartition_4_to_9( ATL, /**/ ATR, &A00, /**/ &A01, &A02,13 /* ************ */ /* ****************** */14 /**/ &A10, /**/ &A11, &A12,15 ABL, /**/ ABR, &A20, /**/ &A21, &A22,16 /* with */ b, /* by */ b, /* A11 split from submatrix */ PLA_SUBMATRIX_BR );17 PLA_LU_level2( A11 );18 PLA_Trsm( PLA_SIDE_LEFT, PLA_LOWER_TRIANGULAR,19 PLA_NO_TRANSPOSE, PLA_UNIT_DIAG,20 one, A11, A12 );21 PLA_Trsm( PLA_SIDE_RIGHT, PLA_UPPER_TRIANGULAR,22 PLA_NO_TRANSPOSE, PLA_NONUNIT_DIAG,23 one, A11, A21 );24 PLA_Gemm( PLA_NO_TRANSPOSE, PLA_NO_TRANSPOSE,25 minus_one, A21, A12, one, A22 );26 PLA_Obj_ontinue_with_9_to_4( &ATL, /**/ &ATR, A00, A01, /**/ A02,27 /**/ A10, A11, /**/ A12,28 /* ************** */ /* ****************** */29 &ABL, /**/ &ABR, A20, A21, /**/ A22,30 /* with A11 added to submatrix */ PLA_SUBMATRIX_TL );31 }32 < leanup >33 }Figure 3.7: FLAMBE (parallel C version) ode for the Eager version of LU fatorization
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12 void PLA_LU_eager( PLA_Obj A, int nb );3 {4 < delarations >5 PLA_Create_onstants_onf_to( A, &minus_one, NULL, &one );6 PLA_Obj_partition_4( A, &ATL, /**/ &ATR,7 /* ************** */8 &ABL, /**/ &ABR,9 /* with */ 0, /* by */ 0, /* submatrix */ PLA_SUBMATRIX_TL );10 while ( size = PLA_OBJ_GLOBAL_LENGTH( ABR ) ){11 b = min( size, nb ); /* Determine blok size b */12 PLA_Obj_repartition_4_to_9( ATL, /**/ ATR, &A00, /**/ &A01, &A02,13 /* ************ */ /* ****************** */14 /**/ &A10, /**/ &A11, &A12,15 ABL, /**/ ABR, &A20, /**/ &A21, &A22,16 /* with */ b, /* by */ b, /* A11 split from submatrix */ PLA_SUBMATRIX_BR );17 PLA_LU_level2( A11 ); /* A11 <- L\U11 = LU fat( A11 ) */18 PLA_Trsm( PLA_SIDE_LEFT, PLA_LOWER_TRIANGULAR, /* A12 <- U12 = inv(L11) * A12 */19 PLA_NO_TRANSPOSE, PLA_UNIT_DIAG,20 one, A11, A12 );21 PLA_Trsm( PLA_SIDE_RIGHT, PLA_UPPER_TRIANGULAR, /* A21 <- L21 = A21 * inv(U11) */22 PLA_NO_TRANSPOSE, PLA_NONUNIT_DIAG,23 one, A11, A21 );24 PLA_Gemm( PLA_NO_TRANSPOSE, PLA_NO_TRANSPOSE, /* A22 <- A22 - A21 * A12 */25 minus_one, A21, A12, one, A22 );26 PLA_Obj_ontinue_with_9_to_4( &ATL, /**/ &ATR, A00, A01, /**/ A02,27 /**/ A10, A11, /**/ A12,28 /* ************** */ /* ****************** */29 &ABL, /**/ &ABR, A20, A21, /**/ A22,30 /* with A11 added to submatrix */ PLA_SUBMATRIX_TL );31 }32 < leanup >33 }Figure 3.8: Commented FLAMBE (parallel C version) ode for the Eager version of LUfatorization
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performane is addressed, while the disussion regarding the e�ets of these speializationswill be largely delayed until Chapter 5.3.2.3 Parallel Speializations and ExtensionsThus far, details regarding omputational environments have been largely glossed over.The di�erent approahes were desribed in a manner that avoided any real onsiderationof a omputational environment even if the text oasionally used the term \sequential"to supply a basis for ommuniation. While this is appropriate if one wishes to treat thepresented derivation methods as useful eduational tools, it falls short if one wishes to bringthese ideas to fruition in the real world.To realize the presented algorithms and to implement the primitives disussedthus far is a straightforward task if the developer is restrited to the monolithi memorymodel [60℄. However, to extend the algorithms so that they are eÆient in a distributed-memory system requires more work.This subsetion presents a number of issues that only arise in the parallel arhite-tural arena and show that few hanges are required to extend the algorithms and abstrationsalready presented so as to omply with the restritions and requirements imposed by thismodel.Why Speialization Is ImportantWhen one shifts one's fous from the abstrat environment of algorithmi derivation to thatof implementation, a number of issues arise. In the arena of linear algebra algorithms, theseonerns an largely be pared down to one: memory hierarhy onsiderations. For exam-ple, in the parallel arhiteture ase there are two basi programming paradigms (models):shared-memory and distributed-memory. In this doument the fous is on an approahthat was designed with distributed-memory mahines in mind, but with the ability to treatthe underlying arhiteture as if it were based on the shared-memory model. The reasonfor this approah is simple; it is desirable to aommodate both models and, sine theshared-memory model o�ers muh less ontrol than the distributed model, using a stritlyshared-memory model would prove sub-optimal from a performane point-of-view [75℄.The primary advantage of the shared-memory model is programming ease. Most ofthe examples in this dissertation, and all those presented thus far, ould remain unhangedif they were to be implemented on a shared-memory mahine. The reason for this is simple;shared-memory models treat a omputational system, whether it has non-uniform memoryarhiteture (NUMA) harateristis or not, as if it were a \UMA" arhiteture. Unfortu-nately, ignoring the NUMA nature of a system an result in sub-optimal performane. Bylayering the abstrations and the library derived from those abstrations so as to ease tran-sition from a shared view to a distributed view, the user is allowed to trade onveniene forperformane in a exible manner. In Chapter 5 we demonstrate how this design philosophyalso allows for the implementation of a (simple) performane analyzer that an dynamiallyanalyze the trade-o�s as the user transitions between approahes.64
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Writing Parallel AlgorithmsThere are two ways to view the onstrution of parallel algorithms in this setting. Forsimpliity, let us all them \hands-o�" and \hands-on." Both philosophies have potentialadvantages : : : and disadvantages.The hands-o� approah is to rely upon the underlying omputational environmentto deal with issues related to parallelism. This, of ourse, requires that the underlyingode translation and instantiation mehanism be apable of treating the omputationalenvironment as a shared-memory system. Figure 3.9 shows how the ode for the parallelversion of Eager LU deomposition might appear in suh a sript.1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ; // (* Atually, Square here *)4 L === A ; // {Reursive} {Permanent} (* Establish name equivalene *)5 U === A ; // {Reursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is loal and19 A11 is loally square and20 A11 is nb by nb ; // No larger than is implied2122 A11 = (L11\U11) <- lu_fat(A11) ;23 A12 = U12 <- L11^-1 * A12 ;24 A21 = L21 <- A21 * U11^-1 ;25 A22 <- A22 - L21 * U12 ;26 partition27 / ATL # ATR \28 |###########|29 \ ABL # ABR / <= / A00 | A01 # A02 \30 |------------------|31 | A10 | A11 # A12 |32 |##################|33 \ A20 | A21 # A22 / ;34 enddo;35 L =!= A;36 U =!= A;Figure 3.9: Sript for Eager version of parallel LU fatorization (hands-o�)Notie that there are two very di�erent ontexts in whih this sript may be used. The �rst is a trueshared-memory environment in whih the underlying hardware provides the support that would allow for asimple line-by-line translation of this ode to funtion as it should. The other ase involves mapping onto65



www.manaraa.com

a mahine whose memory is distributed. While the �rst ase is rather uninteresting from the perspetiveof the work to be presented here, onsideration of the seond ase brings up a number of issues that meritfurther examination.Here again, we have something of a strategy bifuration. The user may either handle the issues thatarise \by hand" or they an suppose that an underlying library, oupled with the sript translator, providesthe required support. The former option requires a less sophistiated library, a simpler sript translator,and seems to hold out the promise of more omplete ode modularity while the latter would seem to providea framework for simpler oding. There are a number of issues to be dealt with if the automated odegeneration system is to work on a distributed mahine. In the following setions, we disuss some of theseissues and, in the end, onstrut an LU deomposition algorithm that, while expliitly dealing with theissues involved, does not take on the kind of apparent additional omplexity that is traditionally assoiatedwith onverting an algorithm to a distributed-memory model.Impat On AbstrationLet us assume that the SUMMA [73℄ approah to the implementation of the omputational omponentsof these algorithms is the one employed. This approah involves the appliation of a series of parallel,bloked operations. Using SUMMA, a parallel matrix-multipliation onsists of a series of panel-panel(outer-produt), matrix-panel (a matrix multiplied by many vetors), or panel-matrix multipliations. Theuse of SUMMA implies that two other abstrations are required if one does not wish to adopt the \hands-o�"stane disussed in the previous setion. We refer to these abstrations as dupliation and onsolidation.It may appear diÆult to determine whether these operations are more properly referred to asmanipulations or omputations. However, as we de�ned omputations to enompass any operation thatinvolves more than one data objet, by de�nition both abstrations fall into that ategory. Dupliationinvolves dupliating part of a data objet. That is, opying the data from one objet into the data omponentof some other objet(s). Consolidation (often referred to as \redution") is the onverse of this relationship.It involves applying a funtion (in Fig. 3.9, addition) to some set of objets that may be distributed arossthe grid and opying the result into another objet.Revisions For PerformaneWhile generating eÆient, parallel ode from a sript is useful, it may be that the ode generation systemuser feels too far removed from the implementation. Sometimes this distane is desired, as in the ase of auser who has neither the desire nor the expertise to avail himself of the \deeper" aspets of the programmingenvironment; but often, it is not.A ommon mistake that this ode generation system avoids is the permanent hiding of parallelismand other details. By allowing the user to address the underlying arhitetural system at di�erent levels ofgranularity, superb performane and simpliity an be ahieved with a reasonably onsistent programming\look and feel." This approah would seem to be the natural extension of the belief that omputationalabilities (suh as parallelism) should not be hidden even though we may wish to oneal how they operate [8,75℄. To illustrate the manner in whih suh revisions might appear in a sript language, we presentFigure 3.10. A few remarks about some of the notation used in this \hands on" sript are probably alledfor. The use of the \Loal" funtional notation is intended to impose the requirement that the enlosedoperation does not involve any interproessor ommuniation. The other two, somewhat rypti, notations|* and -* indiate \all proessor olumns" and \all proessor rows," respetively.As an be seen in Chapter 5, there are many things that an be determined and usedto advantage if the input is more spei� than a mathematial desription of the problem athand. In the ase where suh additional information is withheld from the analysis engine,ertain defaults are assumed. However, there is no guarantee that the default values are agood approximation to those of the problem under onsideration. It would be very diÆult to66
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1 L === A ; // {Reursive} {Permanent} (* Establish name equivalene *)2 U === A ; // {Reursive} {Permanent}3 L has_property unit_lower_triangular ; // (* Permanent Property *)4 U has_property upper_triangular ;5 A has_property square ; // (* Atually, Square here *)6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is loal and19 A11 is loally square and20 A11 is nb by nb ; // No larger than is really implied2122 funtion_override("PLALu1");23 A11 = (L11\U11) <- lu_fat(A11) ;24 Lower[L11tri℄ |* <- Lower[L11℄ ;25 A12 = U12 .<- Lower[L11tri℄^-1 * A12 ;26 U11tri -* <- Upper[U11℄ ;27 A21 = L21 .<- A21 * Upper[U11tri℄^-1 ;28 L21ol |* <- L21 ;29 U12row -* <- U12 ;30 A22 .<- A22 - L21ol * U12row ;31 partition32 / ATL # ATR \33 |###########|34 \ ABL # ABR / <= / A00 | A01 # A02 \35 |------------------|36 | A10 | A11 # A12 |37 |##################|38 \ A20 | A21 # A22 / ;39 enddo; Figure 3.10: Sript for Eager version of parallel LU fatorization
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provide suh assuranes, as the same implementation must work with di�erent mathematialobjets and on di�erent omputational grids.The information that an be ommuniated via the PLAWright annotations inludes:� The absolute or relative objet sizes� Known onstraints or preferenes (maximum memory onsumed)� Target arhiteture or hardware system spei�s (per proessor or for entire mahine)� Minimum/Maximum/Spei� grid size and topology to be used� That the data will be distributed in some partiular manner� The form of results that are expeted from stati analysis (see Chapter 5 for options).3.3 Related WorkSine the work in this hapter onsiders abstration in the light of both library onstrutionand programming environment, work related to eah topi is disussed.3.3.1 Library-Based AbstrationsThe �rst issue that should be dealt with is the use of the term environment as it appliesto a library. We posit that a library quali�es as an environment, or \framework" if thereader prefers, beause it impliitly imposes a set of onepts on the user. These oneptsare expeted to be appropriate for the problem at hand and apable as ating as guides forthe user.Libraries are a means to \export" the expertise of some set of people so that it isavailable to a seond set of individuals. Often it is the ase that this seond set laks some,or all, of the area-spei� expertise of the �rst group. Most usually the library is onsideredto be at a \lower-level" than the appliations whih use it. However, this is not always thease. Consider the fat that a library an be distributed in at least two forms [57, 54℄. The�rst is the more traditional: omputer-language (soure or mahine) ode. The seond is inthe form of an algorithmi desription of the proess of onern. This latter form providesan unrealized (potentially high-level) funtionality set that imposes fewer restritions, butsupplies the same framework as a oded library.Two well-known examples of traditional linear algebra libraries are LINPACK [22℄and LAPACK [5℄. Both libraries are built around an index-based sheme ombined with aset of general omputational kernels. LINPACK, predating LAPACK, utilizes a subset of thekernels exploited by LAPACK. Whereas LINPACK uses only Level-1 BLAS (vetor-vetor)operations, LAPACK uses all three levels of the BLAS.While a paper or template [10℄ library does not provide an appliation program-ming interfae (API), it does provide, in many ases, a \plan of attak" for implementing68
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a software system and a foundation for reating an API (modulo programming languageonstraints).3.3.2 Programming EnvironmentsTwo well-known examples of modern programming environments are the Mathematia [77,35℄ and MATLAB [58℄ programming pakages. Both supply the user with a vast array offuntions for omputation and visualization as well as a rudimentary integrated debuggingsystem. Additionally, both provide a huge assortment of library routines and their ownprogramming language with whih to all them. Further, both supply interfae routinesand doumented spei�ations so that the user is allowed to link in routines written inother more traditional languages, suh as C or Fortran.Although Mathematia and MATLAB are examples of environments, they are, inmany ways, atypial of suh pakages, though probably typial of the diretion in whihthese produts are moving. While motivations of a ommerial nature may keep the soureode of these newer systems under wraps for the near future, these produts allow the userto plug-in their own modules. 1Older software systems tended to be monolithi and, as they did not produe ode,plugging in user-de�ned modules was diÆult. Newer pakages take a two-tiered approah:those users who wish to ontinue to view funtions as blak-boxes are free to do so, whilethose who want to look inside are given the ability to do so.3.4 Chapter SummaryIn this hapter, we have presented a language that allows the algorithm designer to spe-ialize their operations. Spei�ally, we have seen that the user is free to manipulate thedistribution of data aross the omputational grid as he sees �t. Suh freedom is desirablefrom a performane-based point-of-view, but it is neessary from a exibility standpoint. Ifthis multi-layered approah is abandoned, the lak of a partiular library module may implythat the algorithm designer is engaging in a futile e�ort. Just as in the sequential ase, it isvital that the user have the tools needed to onstrut novel algorithms.In Chapter 4 we demonstrate that di�erent sript variants result in the produtionof di�erent ode instanes, as one would expet. In that same hapter, we desribe how thisours and why it is often bene�ial. While Chapter 4 also ontains a disussion related tosript versions and the di�erenes in the ode orresponding to those versions, muh of thedisussion regarding the importane of this feature is delayed until issues of performaneare onsidered in Chapter 5.
1MATLAB supplies, at an added ost, the ability to ompile their ode into a more eÆient exeutable.69
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Chapter 4Automated Code GenerationImplementation tweaking is a standard part of the proess when one is developing high-performane sienti� appliations intended to run on parallel arhitetures. In this areaof researh, algorithmi restruturing and ode-level optimizations have traditionally beendone by di�erent groups [32℄. Unfortunately, information that ould be employed to makeode more eÆient is traditionally obsured in the translation from a high-level desriptioninto low-level ode. Allowing the user to ode in a domain-spei� language suh that high-level information is retained while automatially oupling the requirements to low-levelroutines would allow for both high- and low-level optimizations. The work presented in thishapter allows one to perform preisely this ativity. That is, to generate ode instaneswith high-performane harateristis while programming at a very high level.For an overview of the automated segment of the proess desribed in this disserta-tion, the reader is instruted to refer to the illustration in Figure 3.1. There, the high-levelprogram (expressed in PLAWright) is translated into a series of PLAPACK library alls.The transformation proess depends on the spei�s of both the target library andthe omputational environment. Thus, the library routines in the target library are anno-tated with the following in order to reate the orresponding annotated library:� Their semantis, whih indiate what linear algebra operation is performed (i.e. servieprovided).� Guards, whih indiate the onditions under whih the library all is well-de�ned.� Performane harateristis, whih are used to generate automated analysis.The PLANALYZER uses the semantis and guards of the library routines in orderto generate a number of implementations whose funtionality orresponds to the input sriptversion. This proess is the fous of this hapter as is indiated in Figure 4.1. While thishapter largely ignores performane onsiderations, the next hapter fouses on the issueof performane harateristis, so the reader with suh onerns need not worry that theyhave been entirely overlooked. 70
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Figure 4.1: Where the ode generator �ts into the \grand sheme" of things.4.1 Motivation for Automating Library LinkageThere are many reasons that one might wish to automate library linkage. In Chapter 3,the PLAWright sript language was presented. In that hapter, the fous was on the fatthat the language provided for the eÆient utilization of the expertise of the programmer.It was also pointed out that the sripts ould be ompiled and the resulting odes wereomputationally eÆient. By automating library linkage, one an write a single exemplarode (sript) that ompiles into many di�erent ode realizations.This pratie also failitates the leveraging of the expert's knowledge via a separationof onerns. The appliation writer an onentrate on the piture as he sees it and relyon the fat that the library writer provides eÆient routines and that those routines arelinked to at the time of ompilation. The library writer might have a similar relationshipwith the kernel writer. All of these users ould be \ommuniating" their work throughthe annotations they add to their ontributed routines and allowing the ompilation systemto �nd a math between what they require (as is expressed in the sript) and what thelibrary provides (as is ommuniated in the assoiated annotation). Thus, the automatedsystem represents an potential extension to what is often-sought in this relationship amongprogrammers. In the next hapter, we disuss how high performane is ahieved. Here, weassume that eÆient routines are linked to the user's requests.Portability an be as important as performane in the domain of dense linear algebra71
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libraries. Not only do ompanies ome and go, but vastly di�erent arhitetural designs maybe reated and tested. Sometimes this testing ours in the marketplae and sometimes ittranspires in researh failities, but the shakeout that determines what lasts and what doesnot, will ontinue to happen as long as resoures are �nite. The ore diÆulty here is how todesign a ode generation system or systematize an approah suh that the result is amenableto both evolutionary (e.g. Cray T3D ! Cray T3E) and revolutionary (e.g. Intel Paragon! LEGION ! Blue Gene) hanges.It would seem that adapting to hanges that are, as measured by performane met-ris, orders of magnitude apart would best be supported by two distint approahes [3℄,one emphasizing ease-of-use, and the other onentrating solely on ahieved performane.However, it is our thesis that one should moderate, at times, the (laudable) goal of \a sepa-ration of onerns." One must determine when onerns are idential or largely overlapping(i.e., to deide if and when these onerns are the same when viewed from a given level ofabstration).The sripts orresponding to the Eager and Lazy versions of LU fatorization (de-pited in Figures 4.2 and 4.3, respetively) are in a form that might be termed user-friendly.However, the user may wish to give diretives to the ode generation system. These di-retives might involve objet distribution, blok sizes, or speifying the name of a spei�library routine. In this hapter we address the impat of these \hints" on ode produ-tion. For example, if one were to speialize Figure 4.2 by providing suh hints, the resultmight well be Figure 4.4 (seen previously in Figure 3.10). Note that lines 22 and 24-30in Figure 4.4 are all user-supplied hints related to funtion seletion (24) or distributionspei�ation (24-30).4.2 Issues in Library LinkageThe issues that one must onsider when designing, in the abstrat, an automated library-linkage system are mirrored when one's fous shifts to an implementation. This setionrestrits itself to issues that apply to the abstrat ase while the next setion deals witheah issue in the ontext of a proof-of-onept implementation. The manner in whih theproess of linking takes plae is delayed until Setion 4.3 beause ommuniation regardingthat subjet bene�ts from the existene of onrete examples.4.2.1 A (Fititious) Linking LibraryThere are many ways in whih any sienti� software library an be onstruted. Werestrit our attention to theoretial onstruts that lie at opposite ends of the spetrum ofpossibilities and onsider issues germane to the use of a sript language suh as PLAWright.First, there is the possibility that the library ontains a great many subroutines.So many, in fat, that there is always at least one subroutine that mathes the featurerequirements of any operation requested (see Setion 4.2.2) by a sript statement. At theother end of the sale, there is the possibility that the library onsists of few routines, but72
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1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ; // (* Atually, Square here *)4 L === A ; // {Reursive} {Permanent} (* Establish name equivalene *)5 U === A ; // {Reursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is loal and19 A11 is loally square and20 A11 is nb by nb ; // No larger than is implied2122 A11 = (L11\U11) <- lu_fat(A11) ;23 A12 = U12 <- L11^-1 * A12 ;24 A21 = L21 <- A21 * U11^-1 ;25 A22 <- A22 - L21 * U12 ;26 partition27 / ATL # ATR \28 |###########|29 \ ABL # ABR / <= / A00 | A01 # A02 \30 |------------------|31 | A10 | A11 # A12 |32 |##################|33 \ A20 | A21 # A22 / ;34 enddo;35 L =!= A;36 U =!= A;Figure 4.2: Computer-readable Sript for Eager version of LU fatorization
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1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ; // (* Same as non-unit *)3 A has_property square ; // (* Atually, Square here *)4 L === A ; // {Reursive} {Permanent} (* Establish name equivalene *)5 U === A ; // {Reursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is loal and19 A11 is loally square and20 A11 is nb by nb ; // No larger than is implied21 A01 = U01 <- L00^-1 * A01 ;22 A10 = L10 <- A10 * U00^-1 ;23 A11 = (L11\U11) <- A11 - L10 * U01 ;24 A11 = (L11\U11) <- lu_fat(A11) ;25 partition26 / ATL # ATR \27 |###########|28 \ ABL # ABR / <= / A00 | A01 # A02 \29 |------------------|30 | A10 | A11 # A12 |31 |##################|32 \ A20 | A21 # A22 / ;33 enddo;34 L =!= A;35 U =!= A;Figure 4.3: Computer-readable sript for Lazy version of LU fatorization
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1 L === A ; // {Reursive} {Permanent} (* Establish name equivalene *)2 U === A ; // {Reursive} {Permanent}3 L has_property unit_lower_triangular ; // (* Permanent Property *)4 U has_property upper_triangular ;5 A has_property square ; // (* Atually, Square here *)6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is loal and19 A11 is loally square and20 A11 is nb by nb ; // No larger than is really implied2122 funtion_override("PLALu1");23 A11 = (L11\U11) <- lu_fat(A11) ;24 Lower[L11tri℄ |* <- Lower[L11℄ ;25 A12 = U12 .<- Lower[L11tri℄^-1 * A12 ;26 U11tri -* <- Upper[U11℄ ;27 A21 = L21 .<- A21 * Upper[U11tri℄^-1 ;28 L21ol |* <- L21 ;29 U12row -* <- U12 ;30 A22 .<- A22 - L21ol * U12row ;31 partition32 / ATL # ATR \33 |###########|34 \ ABL # ABR / <= / A00 | A01 # A02 \35 |------------------|36 | A10 | A11 # A12 |37 |##################|38 \ A20 | A21 # A22 / ;39 enddo;Figure 4.4: Annotated sript for an Eager version of parallel LU fatorization
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routines from whih one ould onstrut an algorithm mathing the semanti requirementsof any legal sript statement.Either of these libraries an be used in an automated ode generation system. Deter-mining whih one is \best" would seem to be a philosophial, not sienti�, issue. Certainly,in the large library ase, mathing the requirements of the sript to the funtionality pro-vided by the library is simpler. The mathing an be both 1:1 on a line-by-line basis andpurely syntati in the �rst ase. Further, if the underlying library is optimized, the opera-tions orresponding to these mathes is almost always the best hoies from a performaneperspetive. In the small library ase, the mathing proedure is more omplex, as it hasthe responsibility of building programs from omponents.For the purposes of this dissertation, we fous on a library that lies somewhere inthe middle. This is justi�ed for the following reasons. First, if the large, eÆient library isonsidered the target, the work involved in the binding proess is not very interesting. Inthat ase, mathing is simple and, while automated performane analysis (see Chapter 5)might be interesting, it is not neessary, as the highest degree of available eÆieny isvirtually assured simply by dint of the \brains" in (or behind) the library. Seond, thease of the building-blok library has an unfortunate stopping point, namely the onstrutsin the language of output. Sine the idea of generating optimized assembly language froma high-level sript language would appear to be too ambitious for any single dissertation,a middle ground was seleted. In any ase, expertise is required. For the large library, agreat deal of expertise would be needed to onstrut the annotations, while in the building-blok library ase, the greater expertise would be required to transform the input to a listof library-mathable requirements. Finally, the PLAPACK library was targeted beause itis an implementation of the layered approah advoated in this doument and has goodperformane harateristis.4.2.2 Reduing a SriptThe algorithm expressed in sript form is to be realized through the funtionality of a library,thus the requirements of the sript must be mated to that library. One ould math therequirements diretly, if they were to assume the \large" version of the library desribed inSetion 4.2.1. However, that setion lari�es why the use of suh a library is not employedin this work. Thus, we assume that some form of redution to requirements must take plae.The question then beomes one of determining the language into whih these require-ments are translated. This determination has been largely ditated to us by the abstrationsbehind the language itself. In Setion 3.2.1, details about the neessary abstrations under-lying the PLAWright language were given. It would seem ertain that the language formwe employ to express the sript requirements must have the ability to express those ab-strations. Certainly, though it is not stritly neessary, it an also prove bene�ial if this\down-translation" (from sript to requirements) is apable of produing sript-indued-requirements that express higher-level needs. It is often advantageous to stay as lose aspossible to the appliation (and the appliation language) so as not to lose information.Therefore, we deem it bene�ial for any suh ode generator to have the ability to translate76
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down to various levels of feature abstrations so that it an math the library at the highestlevel possible. Alternatively, translation ould our in a step-wise fashion, where libraryfuntionalities are mathed at the highest level available and further re�nement (down-translation) performed on a need-driven basis. As an be seen in the implementationalarena (Setion 4.3.3), the former approah was seleted stritly for reasons of expedieny.4.2.3 Annotating a LibraryIt might appear that the questions regarding the form of the language used to annotate thelibrary have already been answered. Setion 4.2.2 supplied details about how the abstratdown-translation is to our, and it seems logial to assume that the library annotationsare to math that language if a binding is to our. Unsurprisingly, here, we do make thatassumption. Surprisingly, this is not the end of the subsetion.It would seem that we are still left with some hoies about the language we wishto use in order to annotate our �titious library. We ould:1. Use the target language of the sript requirements (lowest level).2. Employ PLAWright to annotate the library and the sript translation engine to \di-gest" those annotations.3. Exploit a ombination of the �rst two ideas.We utilize the third option. However, for purposes of exposition, a mid-level format is usedto illustrate the realization of these annotations.4.2.4 Produing OutputThe kind of output produed has largely been determined by the methodologial approah wehave assumed: the use of some existing library or libraries. Sine interoperability onernsare outside the sope of the researh ompleted, we have restrited ourselves to a singleomputer language. Further, beause the existing sienti� libraries are usually writtenin an imperative language, most often C or Fortran, we restrit our attention to thoselanguages.4.3 Implementation: An Automated LibraryThe software system depends on mathing sript requirements to the library funtionality.Thus, it avoids having to handle many of the diÆulties involved when one deals with novelarhitetures by relying on a library expert. This expert is expeted to provide the (PLAN-ALYZER) system with orret (funtionality and performane) annotations. Further, it isexpeted that the routines to be \mined" evine superb performane harateristis.Those dislaimers aside, not all is lost. In the disussion of Setion 4.2.1 regardingthe design of a �titious library, it was pointed out that the ode generator an ompose77
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a fairly small number of primitive operations to implement an algorithm. This removes agood deal of the burden from the shoulders of the library expert as that individual an besupplied with a short list of annotated and optimized funtions whih must be provided.While it is still true that the expert may have to do some work for this to be ahieved, theburden is deidedly eased when ompared to traditional library building methods. In thoseases, supplying the kernel routines was the �rst of many steps; here, it marks the shift intoa far more automati method of development.4.3.1 Tools EmployedIn order to allow automated binding to an annotated library, a number of software toolswere used. The �rst step in the hain of exeution is the ANTLR [61, 62℄ ompiler-ompiler.Given PLAWright ode, ANTLR was used to ompile the sripted input into a funtionalprogramming form that was syntatially well-formed Mathematia input ode. At thatpoint in the proess, Mathematia [77℄ is utilized in order to perform the pattern-mathingneessary to ombine the requirements of the program with the funtionality provided bythe (annotated) library, and to translate this intermediate form into an exeutable largelyomposed of alls to the target library.4.3.2 PLAPACK: A Target LibraryWhen oupling a sript to a library, it is bene�ial for the library to be onstruted inaordane with the same design philosophy reeted in the sript language. PLAPACK iswell-suited to this goal, due to its layered struture. Figure 4.5 illustrates the PLAPACKlibrary's layered nature and meshes niely with this design goal.

Figure 4.5: The layered struture of the PLAPACK libraryVery briey, the layering allows the naive user to program at a very high level, so asto interat stritly with high-level global routines and the shared-memory view a�orded bythe use of the (poorly named) \API" routines. The more expert user may exerise greater78
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ontrol of the proess by utilizing the lower levels of the library. This allows the appliationprogrammer to reate a working proof-of-onept algorithm, and then to iteratively re�neit in order to maximize performane [2℄. The work presented here further eases this proessby automating optimizations and allowing the user to program at an even higher level ofabstration if he so hooses and to spend more of their energy on algorithmi, rather thanprogramming, re�nement.4.3.3 Compiling PLAWrightThe ompilation of a PLAWright sript is most easily thought of in terms of rewrite rules,syntax-based tranformations. One form of the implementation uses a simple table of rewriterules in order to perform this translation. As that is an approah that lends itself toexposition, that implementation is the one that is studied in this setion.Consider line 25 in Figure 4.2.A22 <- A22 - L21 * U12 ;After the stage of ompilation handled by the ANTLR ompiler tool has been performed,the intermediate form of the program is in a format that an be parsed by Mathematia.The ANTLR tool also determines if the sript is syntatially orret, but the Mathematiaengine is responsible for determining whether or not the sript an be transformed into anexeutable program and, if so, how.When this line of ode enters Mathematia it has the following form:AssignTo[ A22, PLAMinus [ A22, PLATimes[ L21, U12 ℄℄℄whih is transformed, by default, into:AssignTo[ A22, PLAPlus [ A22, PLATimes[ -1, L21, U12℄℄℄The ode generator explores many paths of translation. Let us onsider one of theeventual targets of this translation:PLAGemm[transa , transb , alpha , A , B , beta , C ℄We an ignore the transx parameters, as the details might prove distrating. In orderto arrive at this format, the initial form must be transformed into one that mathes thePLAGemm[℄ all. The following line illustrates the format that must be mathed (the heksof objet types that are inluded in the rewriter are omitted for brevity). The following lineis intended to apture the features of the PLA Gemm( ) library funtion, but the desriptionis divored from that partiular implementation.79
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AssignTo[C1 ,PLAPlus[PLATimes[alpha , A , B ℄,PLATimes[beta , C2 ℄℄℄A few topis need to be dealt with here. The �rst involves the fat that C1 andC2 both math A22. This is allowable in uni�ation as two variables an math the sameobjet. The seond requires only slightly more explanation. Barring expliit user diretivesto the ontrary, the rewriting system an hange the order of the objets involved in anaddition operation. Therefore,PLAPlus[ A22, PLATimes[ -1, L21, U12℄℄beomes PLAPlus[ PLATimes[ -1, L21, U12℄, A22℄in one searh hain. The third and �nal issue involves the multipliation by salars. Theoperation to be mathed inludes alpha and beta terms that are not in the originaloperation. This an be handled in at least two ways. One solution is to default values to theoperations (in the ase that no salar is supplied). Alternatively, one ould build knowledgeinto the rewriter (e.g., that multipliation by 1 results in an objet with unhanged values).The seond option was utilized in the engine for reasons of expedieny, but this will likelybe hanged in the future, as dealing with suh things using a demand-driven approah tendsto be more omputationally eÆient.Given that the PLANALYZER eventually mathes:PLAGemm[transa , transb , alpha , A , B , beta , C ℄all that is left is the output of ode. This is a simple step involving a simple Expression[℄to String[℄ rewrite inside Mathematia resulting in the output:PLA Gemm(PLA NO TRANS, PLA NO TRANS, msalarnegone, L21, U12, msalarone, A22);4.3.4 Annotating the Library: Funtionality ProvidedTo apply any operation, the preonditions of that operation must be met in order for thesemantis of the operation to be well-de�ned. Therefore, tests are applied in order todetermine if the funtion is appliable to the \urrent state" of the program, as seen throughthe eyes of the ode-generation mehanism. In order to advane the state of the program,the appliable and required operations are applied to the urrent state.Pre-Conditions: GuardsConsider a simple example onsisting of the following one-line high-level program.80
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A  A � C;The PLANALYZER attempts to math this with the PLAPACK library's funtionality andafter some analysis identi�es the following all as a possible math.AssignTo[A, PLAPlus[PLATimes[msalarone, A, C℄,PLATimes [msalarzero, A℄℄℄where msalarone and msalarzero orrespond to 1 and 0, respetively.The above is an instane of the library allAssignTo[C , PLAPlus[PLATimes[a , A , B ℄, PLATimes[b , C ℄℄℄whose general funtionality isC  (a � A � B ) + (b � C )where a and b are uni�able variables that an be thought of as being of type salar and A ,B , and C are uni�able variables of type matrix (with onformal dimensions). The guardsspeify that neither A nor B an be the same as C , therefore,AssignTo[A, PLAPlus[PLATimes[msalarone, A, C℄,PLATimes [msalarzero, A℄℄℄is not a valid transformation. Thus, a new variable, used to hold a opy of A, is delared.This allows the use of a PLA Gemm( ) all while satisfying the guards.This reates the following hain of operations:PLA_Matrix_reate_onf_to(A, &MATRIXTEMPA123);}PLA_Copy(A, MATRIXTEMPA123);}PLA_Gemm(PLA_NOTRANS, PLA_NOTRANS, msalarone, A, B,msalarzero, MATRIXTEMPA123);PLA_Copy(MATRIXTEMPA123, A);For reasons detailed in Chapter 5, this ode will be rejeted due to its inherentineÆienies, but it is one of the paths that will be explored.Post-Conditions: Adds and DeletesTo advane the state of the omputation, the operations are applied to the urrent state. Forthe purposes of ode generation, appliation means being added to the program under on-strution; in the ontext of state advanement, it means having the appropriate propertiesadded to and deleted from the property set that orresponds to program state.A simple example should larify this proedure. Reonsider the aforementioned\hain" of ode. 81
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1. PLA_Matrix_reate_onf_to(A, &MATRIXTEMPA123);}2. PLA_Copy(A, MATRIXTEMPA123);}3. PLA_Gemm(PLA_NOTRANS, PLA_NOTRANS, msalarone, A, B,msalarzero, MATRIXTEMPA123);4. PLA_Copy(MATRIXTEMPA123, A);At the outset (the non-existent line 0), matrix A had some state (size, shape,et.) while MATRIXTEMPA123 had no suh properties. After the exeution of lines 1 and2, MATRIXTEMPA123 has the same properties as A and ould be used as a substitute for A.However, after the \exeution" of line 3, MATRIXTEMPA123 has had some of those propertiesdeleted (e.g. that its data omponent is the same as A's), has had some left unhanged (e.g.the size of the matrix), and has had some added (e.g. that its data omponent is the produtorresponding the matrix-multipliation). After the exeution of line 4, the properties ofthe two objets again oinide.4.3.5 Produing OutputThe sript language must be translated into a ompilable language. The viable alternativewould be to have the translation system transform the input down to the level of assemblyode, but that part of optimizing-ompiler tehnology is not part of this dissertation (aswas alluded to in Setion 4.2.1). Therefore, the target language is an issue that must beonsidered in the realization of the ode generator.First, we must onsider whih programming language(s) we wish to target. Manyissues arise in suh a deision. Sine FLAMBE has been written in both Fortran and C, wetarget a parallel version of FLAME, PFLAMBE. 1The translation of the algorithm into eÆient ode has learly de�ned lines of demar-ation. This design deision allows language independene for as long as is possible in theompilation proess. The strati�ation of the FLAME ! PLAWright ! PLANALYZERsystem is suh that new programming languages might be targeted in the future.4.3.6 A Realized ConstrutionWhen the PLANALYZER was supplied with the sript depited in Figure 4.2, it produedmany di�erent oding instantiations. One of these is depited in Figure 4.6While the generated library routines shared many traits, they did evine some dif-ferenes. The most ommon of these was the reation of temporary objets for the storageof matries that would at as temporary opies for the omputations performed. In thease of Eager LU fatorization, this seems rather illogial, but, it is not universally so. Forexample, if the following omputations were to our:1PFLAMBE is a sugaroated extension of the PLAPACK language expressed in the FLAMBE manner.PFLAMBE was seleted to be the target language beause its format is not in ux. In addition the use ofPFLAMBE allows us to study more deeply nested memory hierarhy issues in Chapter 5.82
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1 for(;;)2 {3 PLA_Obj_global_length( ABR, &PLAEnderLength);4 PLA_Obj_global_width( ABR, &PLAEnderWidth);5 if( PLAEnderLength == 0 && PLAEnderWidth == 0) break;6 PLA_Obj_split_size( ABR , PLATOP , &PLAlength2, &dummyint );7 PLA_Obj_split_size( ABR , PLALEFT , &PLAwidth2, &dummyint );8 nb = min (PLAlength2 , PLAwidth2 );9 PLA_Obj_view_all (ATL, &A00);10 PLA_Obj_vert_split_2( ATR, nb , &A01, &A02 );11 PLA_Obj_horz_split_2( ABL, nb , &A10,12 &A20 );13 PLA_Obj_split_4( ABR, nb, nb , &A11, &A12,14 &A21, &A22 );15 PLA_Loal_LU(A11);16 PLA_Trsm( PLA_SIDE_LEFT , PLA_LOWER_TRIANGULAR , PLA_NOTRANSPOSE ,17 PLA_UNIT_DIAG , msalarspeialone , A11 , A12 );18 PLA_Trsm( PLA_SIDE_RIGHT ,PLA_UPPER_TRIANGULAR , PLA_NO_TRANSPOSE ,19 PLA_NONUNIT_DIAG , msalarspeialone , A11 , A21 );20 PLA_Gemm( PLA_NO_TRANSPOSE , PLA_NO_TRANSPOSE ,21 msalarspeialnegone , A21 , A12 , msalarspeialone , A22 );22 PLA_Obj_join_4( A00, A01,23 A10, A11, &ATL );24 PLA_Obj_horz_join_2( A02,25 A12, &ATR );26 PLA_Obj_vert_join_2( A20, A21, &ABL );27 PLA_Obj_view_all( A22, &ABR );28 }29 Figure 4.6: Central loop of reated ode for the Eager variant of LU fatorization
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A <- B * C;A <- E;D <- B * C * B * C;it might make sense to reate shadow storage for the B * C result. In any event, the sameompiler tehnology that is used to determine how to alloate registers most eÆiently anbe employed here for entire matries.Later, in Chapter 5, we revisit why suh di�erenes exist among the produed odinginstanes and what they lend the system as a whole.4.3.7 LibrariesWe fous on two libraries that have very similar funtionality for the purposes of the researhpresented here.SaLAPACKThe SaLAPACK library is a parallel extension of the LAPACK library designed for maximalode re-use. The goal of the SaLAPACK projet is to implement all of the LAPACKroutines in an eÆient manner on a variety of parallel arhitetures. Through ode reuse(of the LAPACK library), the projet attempts to use existing optimized and tested serialode on eah proessor of a parallel mahine. This is done through an intermediate levelalled the PB-BLAS (Parallel Bloked BLAS) [14℄ in an attempt to supply users with alayered-library.Unfortunately, it is our opinion that SaLAPACK to sari�es some design oher-ene, or at least readability, in order to gain this ode-leverage. This is not surprising as theharater of the software is heavily inuened by the bottom-up nature of this approah.Higher-level parallel routines may all lower-level parallel (or serial) routines that do notshare the same design goals. This may result in unfortunate ommuniation penalties. Fur-ther, the parallel versions of serial subroutines tend to have many additional parameters,due to the inreased indexing omplexity. This tends to make these routines somewhatdiÆult to use and the underlying library somewhat diÆult to maintain.In addition, SaLAPACK ties itself to the BLACS ommuniations library. Whilethe oupling of two libraries may or may not be a problem, there appear to be some problemswith the BLACS in that there are simple global ommuniations patterns that it appearsto lak.PLAPACKLike SaLAPACK, PLAPACK [74℄ is a library that an be used for doing dense linear algebraon parallel omputers. PLAPACK di�ers from SaLAPACK in that it is an objet-basedonstrut that insulates the user from error-prone index omputations through the use of84
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\views." Views allow objets to o-referene portions of the same data (e.g. parent objetsmay hold data that an be manipulated by any number of hildren).4.3.8 Library BindingA laim is sometimes made that no lass2 of user wishes to view the libraries that they utilizeas blak box routines. This stands in ontrast to the fat that the typial user of a pakagesuh as MATLAB is assumed not to are about what is underneath. In truth, it is often thease that users do not wish to have to know what is going on underneath, but want the optionof asertaining and leveraging suh knowledge. Projets suh as FALCON [20, 57, 19℄ havebeen very suessful in automatially restruturing MATLAB ode into languages suh asSage++ and Fortran90. More reent e�orts suh as Broadway [50℄ have made strides towardsallowing the user to produe high-performane ode while programming in a somewhat naivemanner. This is failitated by a sophistiated, optimizing ompilation system. This obviatesthe need for expertise to some degree, but allows for the leveraging of programmer-originatedoptimizations.It is important to note the synergisti role between library and ompiler in theseases. FALCON utilizes little information about the relationships between routines in thelibraries that it uses. Conversely, Broadway exploits suh information and bene�ts from thelayered onstrution of libraries PLAPACK.4.4 Experimental ResultsThe PLANALYZER is a proof-of-onept implementation. In Setion 2.8, a number of em-pirial tests were performed with FLAME as the methodology under study. In this setion,I demonstrate the eÆay of the PLANALYZER as regards ode generation by applying itto a number of algorithmi variants and versions. These algorithms exhibit di�ering levelsof omplexity and the resulting odes evine di�erent performane harateristis.In this dissertation, the onepts underlying an automated system that ould be usedto generate omputer ode and analysis for linear algebra algorithms have been disussed.Viewing the omponents in the ontext of the automated system as a whole yields an imageakin to the one seen in Figure 4.7.4.4.1 Generating Parallel LU FatorizationIn order to reate a hybridized algorithm, one must �rst generate a number of variants ofthe algorithm under onsideration. When using the PLANALYZER, the next step involvestranslating the algorithms into an input format aeptable to the PLAWright ompiler. Itis at this time that these sripts are annotated with performane and analytial diretives ifthese speializations are desired. Finally, the sripts are oupled with the annotated library2It may be the ase that some individual users do wish to do so.85



www.manaraa.com

Figure 4.7: The \grand sheme" of things as has been disussed.in order to generate ode and orresponding performane analysis. This setion overs thesesteps and analyzes the results.Generating the AlgorithmsUsing the FLAME methodology (see Chapter 2), �ve ommon variants of LU fatorizationwere systematially generated as is detailed in Setion 2.4. Beause the Eager varianttended to yield the best performane for large problems exeuted on parallel mahines, itwas seleted for speialization in the remainder of the experiments onerning di�erenesbetween algorithmi versions.Generating the SriptsAs is disussed in Chapter 3, the barrier between FLAME and the PLANALYZER is bridgedby onverting the algorithm into an ASCII representation. The di�erenes between the wayin whih we might depit an algorithm in a tehnial report and this ASCII version wereexamined in Setion 3.2.1. Some of these sripts were speialized for the parallel environmentthat was to be the target arhiteture (PLAPACK v3.1 exeuting on a Cray T3E). Themethods employed to perform this speialization were desribed in Setion 3.1.3.86



www.manaraa.com

The Sripts: DetailsLet us briey desribe the odes that were analyzed by the PLANALYZER system. First,there were the �ve algorithmi variants of LU fatorization. A orresponding version, interms of omplexity, of eah variant was used for both the ode generation and analysistests. The ommon thread between these variants has to do with the sub-problem of LUfatorization. In eah ase, the submatrix to be fatored was loalized (via expliit sriptdiretives) so as to exist on one proessor. No further diretives were supplied. The variantstested were:1. Eager LU Fatorization2. Lazy LU Fatorization3. Row-Lazy LU Fatorization4. Column-Lazy LU Fatorization5. Row-Column-Lazy LU FatorizationIn order to further explore the apabilities of the analysis engine, the Eager variantwas speialized through both annotation and diret manipulation of a form of the ode thatwould not be available to the asual user. The versions studied were:1. Eager1: The sript was speialized to enfore a 1 by 1 bloking. The intermediateode was hand-massages in order to avoid the all to the LU fatorization of the 1 by1 blok (avoiding a funtion all that would result in a NO-OP).2. Eager2: The sript was speialized to enfore a 1 by 1 bloking as well as expliitlyreating a dupliated-everywhere objet (a multisalar) to hold the portion to befatored. Annotations were also added so that the would all loal PFLAMBE routinesfor the triangular solves. The intermediate ode was hand-massages in order to avoidthe all to the LU fatorization of the 1 by 1 blok as well as the triangular solveinvolving a unit-diagonal 1 by 1 matrix.3. Eager3a: Annotations to the sript fored the LU-fatorization subproblem (A11),to exist on a single proessor. This resulted in an LU subproblem of the distributionbloking size. Further, funtion override was used to fore the Eager1 algorithm(above) to be utilized for fatoring the LU subproblem.Eager3b: Annotations to the sript fored the LU-fatorization subproblem (A11),to exist on a single proessor. Further, funtion override was used to fore the Eager2algorithm (above) to be utilized for fatoring the LU subproblem.4. Eager4: Idential to Eager3a/3b exept that funtional override was used to forea all to a handwritten loal LU kernel whose performane was assumed to be that ofa \standard" level-2 BLAS routine (about 10% of proessor peak) when solving theLU deomposition subproblem. 87
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5. Eager5: The same as Eager4 save for the fat that the sript was annotated tofore a dupliation of the objet to be fatored (a opy into a dupliated-everywheremultisalar). This allowed the appliation of loal triangular solves, so the sript wasannotated to enfore that optimization (via the use of .<-, instead of <-, assignmentdiretives).6. Eager6a: Partitions the matrix to be fatored into sub-bloks that are of the algo-rithmi bloking size (64) rather than the distribution bloking size (16). Funtionaloverride was employed in order to all Eager4 for the LU subproblem. All otheroperations were global.Eager6b: Idential to Eager6a, save for the fat that the LU subproblem was han-dled by Eager5.Eager6: Idential to Eager6a, save for the fat that the LU subproblem was handledby Eager1.Generating CodeThe sript variants were, in nature, similar to the one depited in Figure 4.8. Eah of theexamined variants was given the same level of annotated diretion (see Setion 4.4.1) toprodue the versions examined.The odes produed resembled the program in Figure 4.9. For purposes of pre-sentation, omment bars were plaed around the setion of ode that makes this a Lazyalgorithm, the name was hanged from the unique name generated by Mathematia to Lazyand the lines ontaining variable delarations and objet \free"s were abbreviated.A number of ode instantiations were produed from eah sripted variant input.The number of instantiations ould prove misleading so the reader should bear in mindthat the number is the produt of the number of instantiations available for eah line ofthe sript involving an operation and, more importantly, that most of the odes generatedwere suboptimal. The reason for this latter ourrene is detailed in Setion 4.3.6 and is aproperty of the prototype nature of the PLANALYZER system. The ode generation engineand the analysis engine were not employed in onert.The number of ode instantiations produed:1. Eager LU Fatorization: 842. Lazy LU Fatorization: 843. Row-Lazy LU Fatorization: 5884. Column-Lazy LU Fatorization: 5885. Row-Column-Lazy LU Fatorization: 5292While only random samples of the generated odes were examined, the more eÆientodes tended to orrespond to those that have been generated by hand.88
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1 L has_property unit_lower_triangular ;2 U has_property upper_triangular ;3 A has_property square ; // (* Atually, Square here *)4 L === A ; // {Reursive} {Permanent} (* Establish name equivalene *)5 U === A ; // {Reursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;910 do until ABR is 0 by 011 partition / ATL # ATR \12 |###########|13 \ ABL # ABR /14 => / A00 # A01 | A02 \15 |#################|16 | A10 # A11 | A12 |17 |-----#-----------|18 \ A20 # A21 | A22 /19 where A11 is loal and20 A11 is loally square and21 A11 is nb by nb ; // No larger than this2223 A01 = U01 <- L00^-1 * A01 ;24 A10 = L10 <- A10 * U00^-1 ;25 A11 = (L11\U11) <- A11 - L10 * U01 ;26 A11 = (L11\U11) <- lu_fat(A11) ;2728 partition29 / ATL # ATR \30 |###########|31 \ ABL # ABR / <= / A00 | A01 # A02 \32 |------------------|33 | A10 | A11 # A12 |34 |##################|35 \ A20 | A21 # A22 / ;36 enddo;37 L =!= A;38 U =!= A;Figure 4.8: PLAWright-ompilable sript for a Lazy version of LU fatorization
89
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1 #inlude "mpi.h";2 #inlude "PLA.h"3 int Lazy(PLA_Obj A)4 {5 <variables are delared>6 PLA_Obj_template(A, &MyTemplate);7 /*Create usual onstants*/8 PLA_Create_onstants_onf_to(A,&msalarspeialnegone,&msalarspeialzero,&msalarspeialone);9 /*UserWarning: Square ShapeSpe not yet enfored ... rule not fired*/10 PLAlength1 = 0 ;11 PLAwidth1 = 0 ;12 PLA_Obj_split_4( A, PLAlength1, PLAwidth1 , &ATL, &ATR, &ABL, &ABR );13 for(;;) {14 PLA_Obj_global_length( ABR, &PLAEnderLength);15 PLA_Obj_global_width( ABR, &PLAEnderWidth);16 if( PLAEnderLength == 0 && PLAEnderWidth == 0) break;17 PLA_Obj_split_size( ABR , PLA_SIDE_TOP , &PLAlength2, &dummyint );18 PLA_Obj_split_size( ABR , PLA_SIDE_LEFT , &PLAwidth2, &dummyint );19 nb = min (PLAlength2 , PLAwidth2 );20 PLA_Obj_view_all (ATL, &A00);21 PLA_Obj_vert_split_2( ATR, nb , &A01, &A02 );22 PLA_Obj_horz_split_2( ABL, nb , &A10, &A20 );23 PLA_Obj_split_4( ABR, nb, nb , &A11, &A12, &A21, &A22 );24 /******************************************************************/25 PLA_Trsm( PLA_SIDE_RIGHT , PLA_UPPER_TRIANGULAR , PLA_NO_TRANSPOSE ,26 PLA_NONUNIT_DIAG , msalarspeialone , A00 , A10 );27 PLA_Trsm( PLA_SIDE_LEFT , PLA_LOWER_TRIANGULAR , PLA_NO_TRANSPOSE ,28 PLA_UNIT_DIAG , msalarspeialone , A00 , A01 );29 PLA_Gemm( PLA_NO_TRANSPOSE , PLA_NO_TRANSPOSE , msalarspeialnegone ,30 A10 , A01 , msalarspeialone , A11 );31 PLA_Loal_LU(A11);32 /*******************************************************************/33 PLA_Obj_join_4( A00, A01, A10, A11, &ATL );34 PLA_Obj_horz_join_2( A02, A12, &ATR );35 PLA_Obj_vert_join_2( A20, A21, &ABL );36 PLA_Obj_view_all( A22, &ABR );37 }38 < objets are freed>39 } /*End of Program*/Figure 4.9: PLAPACK/PFLAMBE ode produed by the PLANALYZER
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4.5 Chapter SummaryWhile omputer ode relies on what is underneath it, a \paper library" is not similarlydependent. Suh a library assumes ertain underlying funtionality; it need not desribe,down to the \bones" of the hardware, everything that must be done. This allows an expertin a higher-level domain to supply a library that needs to have its slots �lled [57℄. Thetraditional method supplies the pegs instead of the pegboard [5℄.The important point is that a library either has to have the \right" level of modular-ity or multiple levels of modularity. Either avenue allows the user to program in a reasonableway, but it might be that only the latter situation really allows for mahine-dependent op-timizations to be arried out.The automated ode generation system desribed in this dissertation is an attemptto supply the \best of both worlds" to the user. The sripts would be onsidered under-spei�ed and employing the PLANALYZER allows the automated oupling of this \paperlibrary" to an underlying, enoded library.
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Chapter 5Automati Analysis of anImplementationThis hapter presents an analysis strategy and a prototype implementation that utilizes theapproah presented in this researh work. This is important to the researh presented herebeause the ability to determine the omplexities and osts of algorithms is useful whenonstruting and maintaining linear algebra libraries.First, the synergisti relationship between analysis and the design strategy, alreadypresented, is introdued. Then the various \formats" of analysis are mentioned along withadditional information regarding the parameters the analysis engine is intended to ana-lyze. Finally, the potential interation between the analysis tool and the algorithmi sriptlanguage is disussed.5.1 MotivationReall the example of Eager LU fatorization illustrated in Figure 5.2. We onsider the taskof analysis by examining a sript annotated with diretives suh as those given on lines 20and 22-32 of that Figure. An example sript may be seen in Figure 5.3, while an illustrationdepiting this hapter's plae in the overall sheme of the doument is depited in Figure 5.1.Notie that the sript in Figure 5.2 makes only minor onessions to issues of imple-mentation. The only indiation that the sript is intended for a parallel arhiteture lies inthe annotations related to determining the size and data loality of A11. By way of ontrast,the PLAWright ode in Figure 5.3 not only ontains diretives that relate to the role of A11in matrix partitioning, but lower-level ode that enfores where omputation takes plae byexpliitly handling the ommuniations involved. Further, that same sript requires that aspei� routine (PLALu1) be used to perform the loal LU fatorization and that the analysisengine should ignore what is in the performane setion of the annotated library and applythe line-by-line performane measures inluded in the sript.92
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Figure 5.1: Where the analysis system �ts into the \grand sheme" of things.The task of analyzing the \simpler" sript by hand involves a number of hurdles.First, one must determine what routines are involved. Then one must determine the per-formane harateristis of those routines. After one has determined suh harateristisfor eah operation in the sript, it is neessary to apply the analysis as the loop exeutesand the partitioning hanges the size and shape of eah objet. While the appliation ofline-by-line, annotated omplexity estimation (as is seen in Figure 5.3) is also error-pronewhen done by hand, it does obviate the need to determine the performane harateristisof the routines involved. In either ase, the task then beomes making the resultant formulauseful in some manner.There seems to be no esaping these problems unless one automates the proess.Given an underlying library that is not \smart" (i.e. one that does not hoose the bestalgorithm for the required operation), the simpler sript fores the analyst to sort throughall appliable routines in the library in order to determine the best routine available. Anintelligent library attempts to pik the most eÆient oding unit for eah operation, but thismakes the analysis task onerous beause \the best" hanges as the matrix sizes and shapeshange throughout the ourse of exeution. While the highly annotated sript's analysisburden is unhanged, the auray of that analysis is questionable in this ase beause agreat many simplifying assumptions are impliit in the per-line diretives.Therefore, automating the system of ode prodution in suh a way that the pro-93
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1 L has_property unit_lower_triangular ; // (* Permanent Property *)2 U has_property upper_triangular ;3 A has_property square ; // (* Atually, Square here *)4 L === A ; // {Reursive} {Permanent} (* Establish name equivalene *)5 U === A ; // {Reursive} {Permanent}6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR /13 => / A00 # A01 | A02 \14 |#################|15 | A10 # A11 | A12 |16 |-----#-----------|17 \ A20 # A21 | A22 /18 where A11 is loal and19 A11 is loally square and20 A11 is nb by nb ; // No larger than is implied2122 A11 = (L11\U11) <- lu_fat(A11) ;23 A12 = U12 <- L11^-1 * A12 ;24 A21 = L21 <- A21 * U11^-1 ;25 A22 <- A22 - L21 * U12 ;26 partition27 / ATL # ATR \28 |###########|29 \ ABL # ABR / <= / A00 | A01 # A02 \30 |------------------|31 | A10 | A11 # A12 |32 |##################|33 \ A20 | A21 # A22 / ;34 enddo;35 L =!= A;36 U =!= A;Figure 5.2: Computer-readable sript for Eager version of LU fatorization
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1 L === A ; // {Reursive} {Permanent} (* Establish name equivalene *)2 U === A ; // {Reursive} {Permanent}3 L has_property unit_lower_triangular ; // (* Permanent Property *)4 U has_property upper_triangular ;5 A has_property square ; // (* Atually, Square here *)6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR / => / A00 # A01 | A02 \13 |#################|14 | A10 # A11 | A12 |15 |-----#-----------|16 \ A20 # A21 | A22 /17 where A11 is loal and18 A11 is loally square and19 A11 is nb by nb ; // No larger than is really implied20 Performane performane_override("2*nb*nb*nb/3");21 funtion_override("PLALu1");22 A11 = (L11\U11) <- lu_fat(A11) ;23 EndPerformane;24 Performane performane_override("Bast( nb * nb * 1/2) to PCC");25 Lower[L11tri℄ |* <- Lower[L11℄ ;26 EndPerformane;27 A12 = U12 .<- Lower[L11tri℄^-1 * A12 ;28 U11tri -* <- Upper[U11℄ ;29 Performane performane_override("1/2 * nb * nb * Max(Length(Loal(A21)))");30 A21 = L21 .<- A21 * Upper[U11tri℄^-1 ;31 EndPerformane;32 Performane performane_override("Bast(nb * Max(Length(Loal(L21)))) to PCC");33 L21ol |* <- L21 ;34 EndPerformane;35 U12row -* <- U12 ;36 A22 .<- A22 - L21ol * U12row ;37 EndPerformane;38 partition39 / ATL # ATR \40 |###########|41 \ ABL # ABR / <= / A00 | A01 # A02 \42 |------------------|43 | A10 | A11 # A12 |44 |##################|45 \ A20 | A21 # A22 / ;46 enddo; Figure 5.3: Annotated sript for Eager version of LU fatorization
95



www.manaraa.com

dued ode and the produed analysis rooted in the same proess is a promising avenue ofresearh and it is detailed in this hapter.5.2 Issues5.2.1 Why Performane Is ImportantIt seems to be taken for granted that performane is important, but why is that? It is oftenthe ase that an individual does not need an answer immediately. Further, until Moore'sLaw runs out of steam, we are faed with an ever-faster array of proessors. Thus, expendinge�ort on optimizing ode in order to improve performane by a few perent may involveunwise alloation of resoures.Certainly, this is a questionable pratie if that optimization e�ort takes a great dealof time and has limited value. Chapter 3 sought to address the issue of programming easeand speed. If performing this optimization requires a small investment of expert resoures,it may make sense to do so. In addition, it does not do muh good to predit tomorrow'sweather if the task is not ompleted until the day after tomorrow; some problems are suhthat they an take advantage of both the fastest mahines and the fastest algorithms.5.2.2 Why Performane Analysis Is ImportantA basi question that may be asked is: \Is performane analysis neessary?" Obviously,it is not. There are many numerial libraries, both abstrat and onrete, devoid of anyanalytial tools. However, there are drawbaks to that approah.The �rst, and probably most important, disadvantage is seen when attempting tooptimize suh a library for a new arhiteture. Without formulai guidelines it is diÆultto predit how any given hange will a�et the performane of di�erent parts of the exe-utable. Similarly, it beomes diÆult to determine where optimization e�orts should beonentrated. One may be unable to readily determine if the problem lies in the algorithmor in a spei� realization of that algorithm. Sine there is no systematially preditedperformane, there an be no \red ags" that indiate unexpetedly poor performane [37℄.Prediting PerformaneTrying to remedy systemati de�ienies by running a empirial tests is also an ill-onsideredapproah. This method is time-onsuming and tends to be resoure-intensive. More impor-tant, the results of a large number of these tests may be required in order to determine whatparts of the algorithms are responsible for ost overruns. While it may be possible to takea large amount of empirial data along with information about shared sub-omponents ofthe algorithms and use statistial analysis to determine where the bottleneks are, it wouldbe problemati to do so for at least two related reasons.The �rst roadblok to this approah is the huge amount of data neessary for suhan analysis when dealing with a large, monolithi library. There are simply too many96
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variables to make this purely statistial method pratial. The seond problem is even morefundamental and diÆult to overome. Potential \feature interation" would require thatan exponential number of test ases be analyzed.There are a number of soures for poor library performane, but all an be said tobe in one of two major ategories:1. Routines with poor predited performane.2. Routines with performane that is poor (although not neessarily predited to beso) [37℄.It is not always the ase that the hindranes an be lassi�ed as belonging exlusively toeither ategory unless one employs a modeling strategy.Determining the Soures of Performane ShortomingsThe algorithm itself is a potential soure of ineÆieny. As this is the ore of an implementa-tion, it an be the soure of the greatest di�erenes in ahieved performane. Analysis toolsmay not onstrut a superior algorithm from an inferior one. However, they an be usedto indiate the shortomings in an algorithm and, possibly, to suggest algorithmi hangesthat will result in superior performane. These lues may result from ontrasts between twoalgorithms intended to perform the same task, or from a mismath between the performanethat the user predits, based on experiene with similar algorithms, and the performanepredited by the analytial engine (with its built-in knowledge of the underlying algorithmiand arhitetural interations).It is not surprising that the implementation of the algorithm an be the soureof variations in performane. There are some potential soures of ineÆieny that applyonly to the parallel omputational ase, while others apply to both the serial and parallelinstanes. These soures inlude the use of improper ommuniation algorithms, a mismathbetween theoretial models and real mahines, and unfortunate assumptions about the useof proessor and memory resoures and their interations.We note that it is sometimes diÆult to determine when the performane failings arethe result of poor algorithmi design or implementation details. For example, if one takes ahigh-level view, it is possible to predit superior performane in an algorithm. Yet, one mayknow that the algorithm will translate into an implementation that has poor performaneregardless of the real mahine used. Alternatively, this poor performane may be ompletelydependent on the details of the underlying omputational system.Code SteeringWe wish to have the PLANALYZER selet the \best" algorithm in a given situation, butwe also wish to equip the end-user/programmer with the ability to guide the system to aroutine/method that he believes is better (or wishes to study). Therefore, whatever methodsare used, (inremental) user-interation should be kept in mind even if the software doesnot present a \point-and-lik" type of interfae.97
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5.2.3 Conveniene vs. PerformaneThe analysis framework and tools should help to assuage a typial fear about sriptedlanguages. Namely, that they are onvenient to use, but their performane tends to bepoor. Aepted wisdom holds that trying to retain this ease of expression as one migratesto a parallel environment is likely to exaerbate these problems. One an �nd any numberof examples where this \rule of thumb" does, in fat, hold true [20℄.The development system presented here attempts to address both onveniene andperformane onerns. Allowing this freedom is an e�ort to strike a balane between toomuh and too little guidane being provided by the software. It is made possible by makingthe ability to leanly mix the layers of annotation and sripting a entral onern.There are a number of ways in whih this work deals with performane onsidera-tions. We assume that the underlying library (the target of sript translation) is made upof eÆient routines. Therefore, a sript translated into a set of alls to that library shouldalso be eÆient.If the performane of the existing ode segments is analyzed properly and if a sys-temati way of gluing them together intelligently to perform the new algorithm an beonstruted, high-performane should be ahieved. Here, \high" is de�ned to be as perfor-mane omparable to that whih someone intimately familiar with the underlying libraryould e�et.User Bene�tsThe potential bene�ts yielded by our analysis tools, largely mirror those of handraftedanalysis. Analysis tends to provide guidane for algorithm and implementation tuningalong with information regarding ase-spei� proximity to optimal performane.While this sort of ativity an be done by hand, it is made muh easier by omputerassistane in a number of ways. First, when one is dealing with a large library, the individualanalysis tasks are time-onsuming. The determination of relationships and interationsbetween routines is more so. In addition, from a psyhologial point of view, this ativityrequires shifting bak and forth between di�erent onerns and that tends to impose an evengreater time penalty on the designer.The most obvious bene�t to analysis tools is the ability to quikly and dynamiallydetermine the omplexity of a given algorithm or implementation. This allows the designerto determine the eÆieny of the algorithm at various levels of detail. One does not have towaste time tuning an algorithm of inherently sub-optimal omplexity. Further, when dealingwith a multi-tiered algorithm, the analysis may reveal patterns aross and interationsbetween di�erent levels and modules.While the analysis system may not suggest solutions for unneessary interations,ouplings, and dependenies, it an make them obvious to the experiened designer andmore apparent to the novie. In a similar manner, the analysis system may reveal aseswhere the spei�ity of the situation is not being taken advantage of by the designer.98
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User ResponsibilitiesThe responsibilities of the motivated user who wishes to exploit all of the abilities of theanalyzer are too situation-dependent to be detailed here. This setion, instead, gives andintrodution to the features and requirements of the system as they relate to the \asual"user. The user must supply input to the analyzer in a form that the analyzer an read.However, the programmer need not be onerned with how heavily annotated his sripts arebeause the output form of analysis is not entirely dependent upon the form of the input.The other matter is the spei�ation of the output. There are many potential formsthat output might take. While there are default settings, the PLANALYZER also allows forthe spei�ation of di�erent ways in whih to measure (e.g. operation ounts, time takenet.), di�erent forms of expression, and exatly what to measure (e.g. ommuniation timeonly).5.2.4 Traditional ApproahesTypially, algorithmi analysis in this area has been both manual and somewhat ad ho. Theusual senario involves the analysis of an algorithm as a stand-alone example. The reasonsbehind performane di�erenes in variations on an algorithm are largely hidden beause ofthe monolithi nature of the analysis.5.2.5 Problems with Traditional ApproahesWhile suh an analysis may be aurate, it is not as useful as it might be. Without asystemati approah to the analysis of a family of algorithms, it is diÆult to determine theomparative advantages and disadvantages of the algorithms. Spei�ally, this approah isof severely limited value in the onstrution of hybrid or polyalgorithmi variants [40, 56℄.5.2.6 A New ApproahGiven a systemati approah arried through the design of a library, one an analyze al-gorithms that rely on the omponents of that library. It is the interation between levelsof the library that tends to make this analysis diÆult. A onsistent approah in librarydesign leads to a onsistent pattern of interation.Researh into the issue of hybridization [40℄ gave us some insight into how useful thesystemati onstrution of the algorithms and the layering of the library were when it ameto aurately modeling the target omputational environment. Preliminary tests showedthat these analytial models were reasonably aurate.This systemati nature also provides for the onstrution of automated analysis tools.These tools allow for a more systemati and informed approah to the optimization task thatis typially so onerous in the absene of a uni�ed approah, let alone suh an automated tool.The entral idea is that the performane annotations mirror the ode that, in turn, mirrors99
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the algorithm. Thus, to use the tool, one only need be an \expert" in the onstrution ofalgorithms.By ompiling the algorithmi sript into both a funtional program and an analytialode readable by theMathematia [77℄, symboli manipulation pakage, one an interativelydevelop and analyze these algorithms immediately, in the same, automated environment.Further, these analyses need not be tied to a single set of expressive primitives, suh as timerequired, but may be re-formulated in terms of operation-lass ounts, et.5.2.7 Coupling Code and PerformaneThe module-dependeny graph of a systematially onstruted, layered library has fewerleaves than that of a haphazardly onstruted library providing omparable funtionality. Ifwe implement our own ommuniations library in terms of some set of primitives, we havemore ontrol and fewer mirobenh tests to perform. The same approah an be extended toa very low level, but there is a trade-o�. We must determine how sophistiated to make theode ! performane parser and the right balane to strike between readability, auray,and work-intensity. Annotating the library at too high a level, results in auray at theost of having to benhmark and annotate too many routines. Doing so at too low of a levelmakes the intermediate form of performane ode diÆult to simplify. It is logial to makethe annotations look like ode to as great an extent as possible so that both are readableand so that it is not neessary to learn a new \language" for eah task.Library StrataOne of the most basi reasons for the requisite exibility of the modeling strategy is thatwhat omprises an \operation" hanges as one proeeds in designing, implementing, andre�ning an algorithm. For the tool to be useful it must be able to address the needs of thedesigner as his view of the operations hanges. While this an be motivated in the sequentialarena, it is more straightforward to do so in the ontext of a parallel environment.Consider a simple algorithm like the outer-produt omputation that was disussedin the LU deomposition algorithm. Obviously, in the distributed ase there are a number ofways to de�ne what it means to perform a matrix-matrix multipliation. For instane, thereis the entire multipliation: A22  A22�~a21~aT12. Even if we ignore details of implementation,we may onsider the time spent performing the alulation to be restrited to the timespent doing so on a given proessor. We may wish to ignore time taken to perform themanipulations involved. Further, we may onsider some of the implementational issues thatarise as part of the SUMMA algorithm. We may wish to perform the matrix multipliationwith a set of olumns (e.g. A21 instead of ~a21) in whih ase \the multipliation" may beany of the omponent multiplies, global or loal, of this larger multipliation. Therefore,the analysis system must allow a shift between these di�erent views.Independent of the form the analysis takes, two fundamental questions must beanswered:1. What qualities are to be analyzed? 100
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2. In what quantitative terms should these qualities be expressed (i.e. what are the\units" of analysis)?In the area under study, the answers to these questions are readily available. Theanalysis system measures the time and memory required to perform a given algorithm.Suh qualities have generally aepted unit-measures; time is generally measured in CPU(milli-/miro-) seonds while memory used is measured in (kilo-/mega-) bytes.While these two answers provide all that one may require from a system geared topurely pratial analysis, the features that they enable may not be suÆient for a exibleanalytial tool for a number of reasons. The most basi diÆulty is that these measurementquanta may not allow the measurements to be expressed in a manner desired by the user.For example, if one wishes to determine the number of matrix-matrix produts that areperformed, time and spae omplexity measures may not neessarily yield useful information.However, intelligent struturing and base-level spei�ations yields a set of onstruts thatan be used to express both. Further, there are guidelines that help one to determine thekinds of primitives that must be provided if a ertain kind of feedbak is desired.Parameters of AnalysisOne should be able to use ase-spei� information during the analysis of an algorithm.Certain measures have no meaning if one does not have a mahine model, but do not requirea mahine instane in order to be de�ned. Other measures require a fully-spei�ed mahine(and problem) environment in order to have meaning. Given these fats, the analyzer isdesigned around a set of primitives that yield great exibility in these areas. Furthermore,to failitate feedbak in the desired format, the underlying language should provide for thedynami (user-based) reation of new \onepts."Let us be more onrete. The useful objet-based abstrations under onsidera-tion: manipulation, alulation, and property determination, have already been disussedin Chapter 3. Almost any non-trivial algorithm uses all of these abstrations. Therefore,the analysis must involve, or allow the involvement of, all three. The aveat in regards toallowing the inlusion of measures for some abstrations is inluded as one may also wishto ignore ertain measures. Most obviously one might wish to disount property determina-tion as this alulation is often omputationally trivial. Further, one might wish to ignoremanipulation time and spae omplexity. Alternatively, when one wishes only to onsidersalability issues, it is often onvenient to ignore everything exept the time spent in themanipulation (ommuniation) subsystem. It is not diÆult to reate other ases whereinone might wish to onsider only parts of some of the abstrations while ignoring others.There are many ways to onstrut the framework of this analysis system and theimplemented omputational engine. It seems neessary to allow the user a great deal ofontrol over the primitives and onepts omposed from those primitives. However, it wouldseem that there should be a ertain \default" setting that is both exible enough to providea tool for users with many disparate needs and onventional enough to provide feedbak in aformat that is ommonly seen in papers on the analysis of similar algorithms. The primitives101
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provided should be useful in a wide range of analysis tasks. This is beause the extension ofthe PLANALYZER through the inlusion and de�nition of new primitives requires greaterexpertise than is pratial to expet.While it may seem a bit onfusing to mix terminology with regard to analyzingalgorithms and analyzing programs, perhaps it should not. In a distributed omputationalenvironment, it may be possible to ignore the model versus implementation distintion. It isprobably most useful to think of physial omputational systems as somewhat ompliatedmodels. This is not a new idea; any system an be mimiked with a omplex enough modelvia suessive re�nement. This dissertation fouses on providing a useful model as wellas a systemati way to determine a base set of primitives that have to be evaluated soas allow the determination of fully quanti�ed results. We are onerned with the laritywith whih the tool under onsideration here supplies information. However, the goal ofautomating the kind of performane pro�ling that has traditionally been done by hand isalso a onsideration.Analysis of ComponentsIn order to perform analysis by omposing \building blok" analytial modules, some baselevel of analysis must be determined. The simplest form of omposition would be theunadorned addition of these omponents (formulae). In this setion, we assume that thisis how analysis is arried out. Later setions disuss why this simple approah may beinsuÆient.The previous setion disussed some of the issues that need to be onsidered inthe onstrution of the analysis tool. Among these was the determination of what is tobe measured, in what terms that measurement is to be expressed, and what makes upthe primitive set. Let us, for the moment, restrit ourselves to a small but useful set ofmeasurements; the �; �; and  time-omplexity set. Here, � is the start-up ost for amessage, � the ost per item sent, and  the time per omputation. This is a simple view,speialized for the distributed omputing ase. However, there are analogies to � and � ina serial arhiteture, and multiple s an be used, so this model is useful.The next task is to determine whih omponents must be measured. The last setiondisussed why this is a question. Let us suppose that we have made a utilitarian deision.If we wish to analyze a library, we an express the lowest layer (the leaves) in terms of theprimitive measures (the �; �; and  mentioned previously) and desribe the other layersin terms of those beneath them. There is a trade-o� between auray and annotativeexpedieny with this approah favoring the latter.While the assumption is that the library is layered, this is not stritly neessary.Many modern software pakages, suh as Sni�+ [12℄, automatially determine the allingstruture of a set of routines. From this direted graph, it is possible to onstrut a om-plexity model from the leaves \in." While this situation is not optimal, it does not presentan insurmountable blok to the analysis strategy disussed in this hapter.One problem that may our to the reader involves the modeling of the leaves. Theleaves do not rely upon any other (visible) routines. Typially, one performs empirial102
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measures on these omponents for various problem and omputational grid sizes and thenuses something akin to a line of best-�t to express their omplexity. These routines oftenhave performane harateristis whih are dependent on problem-spei� details suh asoperand shape. The user needs to determine the level of auray that they require of theanalysis system in order to determine how highly re�ned the base-level analyti models needto be.Synthesis of Component-AnalysisWe assumed that the analysis of a omponent that utilizes other analyzed omponents asbuilding bloks was a solved problem. Let us onsider the fat that we may eventually wishto simplify the resulting analyses. In that ase, to analyze a omponent it may be bene�ialto synthesize the analysis of the sub-omponents whih make up the routine (omponent)to be analyzed.The most obvious appliation of \synthesis" is the simpli�ation of the impliitsummations that our over a looping onstrut within a routine. One the summation ismade expliit, simple mathematial substitutions an be made to redue the omplexity (asmeasured by lexial length) of the expression.It should be pointed out that this synthesis is not always a good idea. For, if oneperforms the synthesis at the lowest level, it may be onsiderably more diÆult to ombineexpressions at higher levels without sari�ing auray.5.3 Contributions of the Systemati UnderpinningsApproahing the design of linear algebra algorithms in a systemati fashion redues the dif-�ulty of the analysis task. Our approah to algorithmi and library onstrution tends tosimplify and make expliit the relationships between di�erent parts of the programs as theyrelate to overall performane. Often, implementors optimize algorithms in a ompartmen-talized fashion. They rely on intuition and experiene rather than omplexity measures todrive their optimizations and tend to view eah improvement without onsidering its impaton the larger piture.Perhaps this is almost unavoidable when the routines to be optimized are parts ofa library with no underlying framework. The analysis required in suh a ase ould bemonumental. There are two major roadbloks to be onsidered:� Monolithi onstrution methodology and� Modular, but poorly thought out, onstrution pratiesIf the library is modularized, the di�erent routines tend to all on one another. However,modularity does not imply design soundness, and these relationships between modules maynot follow any disernable pattern. The ombination of these two properties ompliates theanalysis task. The monolithi alternative may seem preferable as that strategy avoids theompliations aused by module interations. Unfortunately, that approah yields a new103
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analysis task for every derived algorithm and fails to provide any sort of framework fromwhih to gain leverage from the analyses already performed. Not only does this result in morework for the analyst [70℄, but it also seems to disallow even the possibility of determiningmeaningful patterns unless the spei�ation of the sub-omponents is systemati.Conversely, if the software system is built with a uni�ed approah and utilizes asystemati methodology to build the algorithms, not only is the onstrution proess eased,but the analysis is onsiderably less ompliated. The design proess allows one to followthe framework of the supplied algorithms. Sine analysis tasks an mirror the struture ofthe objets of their analysis, they an be onstruted top-down, bottom-up, or middle-outalong with those algorithms. It should also be noted that the algorithmi design ould followthe analytial work.Many of these bene�ts ome \for free" when the modularity of the software is pre-sumed to be logial and easily understood. However, most of them are simply enabled bythis systemati onstrution. There is still something of an onus on the (low-level) designerto speify the funtionality, omplexity types, parameters, and measures to the analysisengine, but it should be noted that:1. The layered onstrution, in onert with the FLAME methodology, eases the deter-mination of the patterns seen in a given algorithm and2. The formulai spei�ation of these patterns opens the door for a systemati lassi�-ation of these patterns [43℄).5.3.1 Modularity of the Analyti HarnessThere has already been onsiderable disussion about the various uses of and advantages toan integrated analysis strategy and system. This setion attempts to point out the di�eringimpat that suh tools have on various types of libraries.One must onsider the manner in whih a designer would interat with the designsystem. Thus, the �rst subsetion deals with issues related to hand-built software systems aswell as presenting some synthesis of the relevant ideas already disussed. The next subsetiondeals with the more pertinent ideas in relation to automated library onstrution. Giventhe ookbook nature of the algorithmi onstrution and analysis, systemi automatizationappears to be a realizable goal.Impat on Manually Assembled SystemsTypially, a library, even if onstruted in a very systemati way, is hand-written by pro-grammers (or non-programmers in the ase of \paper" libraries mentioned in Setion 4.5).Sine this approah to library onstrution is the one most appliable to both well designedand poorly designed libraries, let us onsider what an be done in the latter ase (as theformer has muh in ommon with the automated situation disussed in Setion 5.3.1).While the well-integrated, exible analysis tools disussed here are not entirelyamenable to use in a \disorganized" environment, it might be possible to gain some ad-104
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vantage from them. If the analyst is willing to delve into the partiulars of the ompositionand analysis struture, it may be possible to regain some of the exibility possessed by thetools in the more well organized ase.The �rst assumption is that the ode to be analyzed is neither written in the sriptlanguage nor in a style that mirrors that language. This assumption is made beause if itis written in that style, the analyzer an be used on the sript or on something that an bereverse-engineered from the ode.The easiest way to use the analysis tools in this ase would be to hand-translate thegiven ode into the orresponding sript. One might have to translate a number of routinesinto the sript language before getting meaningful feedbak from the automated system.However, the user might wish to delare the routines themselves as primitives, or use theanalysis engine's abilities to rede�ne \onepts," and supply their own omplexity measuresfor the routine.This approah is may result in analyses that lak omprehensibility or fail to reetalgorithmi modi�ations. Both of these problems an be ameliorated to some degree ifthe user is areful in their design of primitives and onepts, making them ompatible withthe remainder of the automated analysis engine. While it may be that the engine lakssome of its former ability to simplify the resultant equations, little should be lost in termsof reeting algorithmi hanges if the user is areful to provide layers similar to thosedisussed here. The analysis engine should also be modular and layered as is the ase withthe prototype under onsideration in this hapter.Impat on Automated SystemsWe now begin a disussion regarding how the analysis engine may aid the automationproess and how automation makes the analysis hore simpler. At the same time, we needto address what is required of the user.Given an automati tool for the onstrution of these algorithms, this system mightbe used to hybridize algorithms already instantiated. Given an algorithm for omputingfuntion A using method I, the system presented in this dissertation ould generate methodsII and III. Eah method has its advantages and disadvantages. Often determining when onealgorithm is superior to another is a omplex task. Given an engine that generates equationsthat an be evaluated on the y, suh hybridization would beome mehanized. This sameapproah ould prove useful in the ase that several levels are simultaneously hybridized.However, it beomes less reasonable to ignore evaluation (seletion) time as one goes downto lower levels of the memory hierarhy.Many of the issues relevant to the analytial tool are independent of this generator.Suh a tool ould be used to selet the \best" algorithm from a library, even when thatlibrary has nothing to do with the system desribed here, provided that some sort of \hand-shaking" between requirements and provided servies [30℄ an be performed. If the systeman determine that a given routine ful�lls the requirements of a given \all," then the systemould take pre-evaluated information about these \gray box" routines and determine whihvariant is optimal in a given situation. 105
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5.4 Implementation: Automated AnalysisThus far we have disussed what is desirable in the abstrat. Now, we delve into issues ofimplementation. To review the urrent stage of the proess as it now stands, the reader isreferred to Figure 5.4. In partiular, the reader's attention is direted to the two boxes inthe lower-right quadrant of that Figure.

Figure 5.4: The position of the analysis engine in the ontext of the implemented system.5.4.1 An Analysis-Ready SriptLet us onsider a sript presented in the preeding hapter, Figure 4.4 (page 75). Reallthat this algorithm is a version of the Eager variant to LU fatorization. In that sript, theuser expliitly ontrols the data distribution so that only loal omputations (omputationalkernels) are required. In Figure 5.5, a repliation of Figure 5.3, two lines (25 and 28) of thissript are annotated with their assoiated ost.5.4.2 Explanation of Sript Extensions and Line-Cost EstimatesA few questions may arise upon viewing this annotated sript (Figure 5.3). For example,one might ask why some of the lines have no assoiated ost. This sript reets a somewhatarbitrary deision. The rationale is that those operations that have a ost whih does not106
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1 L === A ; // {Reursive} {Permanent} (* Establish name equivalene *)2 U === A ; // {Reursive} {Permanent}3 L has_property unit_lower_triangular ; // (* Permanent Property *)4 U has_property upper_triangular ;5 A has_property square ; // (* Atually, Square here *)6 partition A => / ATL # ATR \7 |###########|8 \ ABL # ABR / where ATL is 0 by 0 ;9 do until ABR is 0 by 010 partition / ATL # ATR \11 |###########|12 \ ABL # ABR / => / A00 # A01 | A02 \13 |#################|14 | A10 # A11 | A12 |15 |-----#-----------|16 \ A20 # A21 | A22 /17 where A11 is loal and18 A11 is loally square and19 A11 is nb by nb ; // No larger than is really implied20 Performane performane_override("2*nb*nb*nb/3");21 funtion_override("PLALu1");22 A11 = (L11\U11) <- lu_fat(A11) ;23 EndPerformane;24 Performane performane_override("Bast( nb * nb * 1/2) to PCC");25 Lower[L11tri℄ |* <- Lower[L11℄ ;26 EndPerformane;27 A12 = U12 .<- Lower[L11tri℄^-1 * A12 ;28 U11tri -* <- Upper[U11℄ ;29 Performane performane_override("1/2 * nb * nb * Max(Length(Loal(A21)))");30 A21 = L21 .<- A21 * Upper[U11tri℄^-1 ;31 EndPerformane;32 Performane performane_override("Bast(nb * Max(Length(Loal(L21)))) to PCC");33 L21ol |* <- L21 ;34 EndPerformane;35 U12row -* <- U12 ;36 A22 .<- A22 - L21ol * U12row ;37 EndPerformane;38 partition39 / ATL # ATR \40 |###########|41 \ ABL # ABR / <= / A00 | A01 # A02 \42 |------------------|43 | A10 | A11 # A12 |44 |##################|45 \ A20 | A21 # A22 / ;46 enddo;Figure 5.5: Optimized sript for Eager method of LU fatorization with performane anno-tations
107



www.manaraa.com

depend on the size of the objet and are low enough so as to be onsidered \noise" areignored and others are assigned the omplexity measures orresponding to the performaneannotations provided by the library. Our fous is on the on the ritial path of exeutionand those funtions whih ontribute to it. Thus, global operations are the items of greatestimport and reeive the most attention in the analysis phase. The seond easily motivatedquestion regards the line-by-line ost assignment. One ould have assigned a ost to theentire sript or to every do-enddo loop as both are viable alternatives. However, the analysisissues that arise are more easily motivated by this line-by-line ost-assignment tehnique.Given the annotated sript and the summation expression reeting the ost of thesript (seen in Setion 5.4.3), a few questions arise. The two that relate to the annotationsthemselves are the most easily dispensed with. The Max(Width/Length(Loal(objet))) issimply a funtional programming notation for determining the maximum size of the objetin a given dimension over the set of nodes (i.e. how muh is held by the node that holds themost). This is done beause this maximum tends to be the bottlenek for the algorithm. Theseond is the \Broadast" funtion. This an be replaed \underneath" by any method ofbroadast and the analytial annotation reets the omplexity of the algorithm employed.The expression reeting the ost of the algorithm embodies a number of impliitassumptions. While these assumptions are not stritly enfored in the analysis engine, theyare useful in order to present a simple example. As was mentioned above, the Broadast maytake plae in a number of ways. Therefore, its ost depends on the mahine arhiteture andthe manner in whih the broadast is performed. Here, for simpliity, a two-dimensionalmesh is assumed, and the broadast proeeds via a minimum spanning tree algorithm.While this onvention regarding the broadast is logial and not greatly limiting, the seondsimplifying assumption is a bit more restritive. In order to present a onise summaryformula, we have assumed three things:1. That the distribution bloking size is the same as the algorithmi bloking size.2. That the size of the matrix (n) is an integral multiple of this bloking size (nb).3. That we have used a blok-yli distribution in both dimensions.In Setion 5.6 these restritions are relaxed. In suh ases, auray tends to omeat the ost of intelligible ost expressions.5.4.3 Analytial ResultComputing the total time required for the parallel LU fatorization, TLU(n; r; ; b) thusrequires us to evaluateTLU(n; r; ; b) = n=bXi=1 �23b3 + Tbast(b2; ) + b3dn� ibb e + Tbast(b2; r) + b3dn� ibrb e+ Tbast(b2dn� ibb e; r) + Tbast(b2dn� ibrb e; )108
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+ 2bdn� ibb edn� ibrb e�where b equals blok size nb, r and  are the row and olumn dimensions of a two-dimensionalproessor grid, i equals the iteration index, Tbast(m; p) equals the ost of broadasting mitems within p proessors, and  is the ost of a oating-point operation.While this expression an be easily evaluated, given a ost estimate for the broadast,it is typially useful to have a more ompat estimate for the ost. For example, if one wantedto dynamially hoose between di�erent implementations, a heap estimate of the ost mustbe available. Derivation of suh an estimate is straightforward, but tedious and error-proneif done by hand. Thus, we have reated a prototype system employing Mathematia thatan take the sript input and generate a ost estimate that is ompat in form. However,this estimate may not be of great informative value.5.4.4 The Use ofMathematia Module[℄sThus far, the performane harateristis have been disussed with little spei�ity aboutwhat the annotations inlude or what form they take.Sine the fous of the disussion is limited to imperative languages, suh as Fortranand C, it seems that the level of the subroutine or proedure all is ertainly the mostonvenient loation in whih to plae this annotative information. It should be pointedout that funtional supply (what the routine furnishes) and performane harateristis aretwo separate ideas, but an both be viewed as meeting the requirements of a programmer.Further, it is important to note that various language onstruts (seletors, loops, et.) anbe thought of as meta-subroutines. Combining a loop with a routine reates a new routinewith di�erent performane harateristis; harateristis that are alulable from the twoomponents involved.5.4.5 Performane Estimates: Disrete FormulaeDisrete formulae arise from the analysis of the algorithms under study in this doument. Asan be seen in Setion 5.4.3, one possible analysis format is the result of summing togetherall of the individual operation ounts on a per-loop basis.Why Disrete Formulae AriseAll ommonly used modern omputer arhitetures are disrete. It should not be surprisingthat a model of these systems gives rise to disrete mathematial formulae.Algorithms from the area of linear algebra, an also give rise to disretized equationswhen one desribes their omplexity.Problems with this FormatAs we see above, the expression that results is somewhat unintelligible, luttered as it is withsummations and eiling funtions. Suh results tend to be diÆult to interpret. They are109
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also poor formats for determining performane pro�les, espeially when many parametersmay be varied simultaneously.5.4.6 Closed-Form ExpressionsWhile disrete analysis allows for aurate modeling, it tends to fall short in presenting theuser with understandable information. Typially, the lexially shorter approximations areworked out by hand. The onstants involved are tedious to alulate for various mahinearhitetures. In order to do so, it is often the ase that a number of simplifying assumptionsare inorporated. It is sometimes the ase that these assumptions have a great impat onthe reliability of the resulting formula. It is our goal to design the analysis system so thatthe task is eased and this impat is minimized.A Numerial (a.k.a. A Statistial) TreatmentOf ourse, a number of data points from disrete analysis an be taken as guides for suhthings as a least squares �t to a funtion of a known degree and form. While determiningthis degree is not always simple, it is usually reasonably straightforward beause of knownalgorithmi omplexity properties. Using modern tools suh as Mathematia or Matlab, thediÆulty is less in the determination of a line of best �t than in giving meaning to theoeÆients that desribe that line. The urrent state of the PLANALYZER system is suhthat that these equations an be generated, but the oeÆients have no expliit onnetionto the parameters of the proedure analyzed.Highly Simpli�ed ModelsBeause the analytial system is symboli, it is relatively straightforward to generate losed-form results by sari�ing auray. For example, instead of omputing the time taken toperform operation X, the analytial engine an ount the number of times operation Xwould be alled and produe a result of the form #X. The same idea an be used to yieldounts of di�erent ategories of funtions, ounts of funtions that run at some perentof the proessors peak rate, et. While this form is not what is typially referred to as\losed," there are ases where this might provide more useful information to the developer.For example, if the programmer is attempting to move operations from level-2 to level-3BLAS, it would likely be bene�ial to determine if various hanges to the ode were havingthe desired e�et. The method outlined above would automate that proess.5.4.7 More Pratial ConernsSome issues only have a plae when the disussion is grounded in implementation. Thoseissues are presented, briey, here.
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Viewing the Proessor SetThere are two ways that one an view the proessor set when it omes to the analysis of analgorithmi implementation:� uni�ed and� omponent-wiseThe view of the proessor set as uni�ed ignores the individual di�erenes betweenthe proessor's work sets as well as any di�erene between the omponent proessors. Thelatter simpli�ation may be onsidered harmless beause heterogeneous omputer systemsare not onsidered in this doument beause of the omplexity that their design inits onany suh analysis [13℄.There are a number of approahes to uni�ed proessor modeling. The approahused in the prototype system presented here ould be alled \single-ase" based. The PL-ANALYZER determines the best/worst/average omplexity during any given step of theomputation (where a step may be de�ned to any level of granularity) and sums up thesesteps, in whatever manner, to yield the result. Many other approahes are possible. Onesuh approah would be interval-based. Suh a system keeps trak of a set of ases (e.g.best and worst) and alulates not a single ost, but the interval over whih the osts mayrange. The approah that we seleted seemed apable of providing the information requiredand is more typial of the analyses traditionally seen in the area.The single-ase based model also appeared to be the most appropriate as our interestwas in onstruting a proof-of-onept system that addressed the omplexity of the ritialpath of the ode/arhiteture under onsideration. Therefore, modeling those algorithmisteps that would likely prove bottleneks in the exeution of the ode was the foremostonern. As an be seen by studying the results presented in Setion 5.6 this strategyan yield highly aurate results when many operations are global and involve olletiveommuniations. In suh ases, determining the steps along the ritial path an be donevia the use of a model that laks muh of the detail that would be required to mirror theunderlying library with total auray.5.4.8 Load BalaneThe analysis sheme should have the ability to deal with load balane. This is not to saythat it should do anything about �xing existing load imbalanes past revealing them to thedesigner.The term \load imbalane" is typially taken to mean raw omputational imbal-ane. In other words, di�erent proessors have di�erent operation ounts. This is a validinterpretation of the term, but the meaning of the term an be extended in a number ofways. One of the hief soures of optimization diÆulties is the insuÆient re�nement ofproessor timing di�erenes. While very high-level abstrat mahine models do not evine111
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operation speed di�erenes, useful ones usually do. Therefore, the analyzer must modelnot only the number of (basi) operations done, but also the (relative) speed at whihthe target arhiteture is apable of doing them. This an be done by a very detailedmodeling of the underlying arhiteture, spei�ally the memory hierarhy and timing, orthrough the reation of a base set of operators that failitate the exposure of these timingimbalanes. The work outlined here takes the latter approah; hampioning the use of a(exible) framework so that these di�erent \kernel" rates and omplexities may be spei�ed.In addition to allowing the proper level of performane resolution, the analysis sys-tem requires the ability to re�ne the view of the proessors. It is important to note thatthis does not mean that the analyzer must \imitate" the proessors in a lokstep fashion.As in the ase of the kernel omplexities, it is important that the design system allow theuser to tune the spei�ity of their input to math the detail level that they require in theanalysis system's output for at least two reasons. First, it requires extra work to providesuint information when the analysis engine is provided with a highly detailed system\map." Seond, it is impossible for the analysis to provide highly aurate feedbak if theinformation provided is at too high a level. The latter is not surprising, but it is importantthat the former be pointed out beause it often takes omputational and programing e�ortfor an automated analysis tool to disregard information provided to it.5.5 Related WorkMany of the papers in this area are almost exlusively empirial in their treatment of thepresented algorithm(s) [33℄. Suh work presents an algorithm then disusses various issuesthat revolve around a oded instane of the algorithm under onsideration along with somereal-world experimental (timing) results. Often, work that is more sholarly disusses thepresented algorithms in terms of suh things as omplexity measures. These are oftenfollowed by empirial results as \proof" of the orretness of the more abstrat resultantformulae [24, 70, 31, 53℄.5.5.1 Monolithi AnalysisThe analysis of individual routines is often done in something of a vauum. Usually, thisapproah is taken when one's goal in analyzing an algorithm is to obtain maximum auray.By viewing the algorithm under onsideration as a unit, all of the omputational issues anbe takled in order to yield an aurate reetion of the performane of the algorithm. Thedownside of this approah is that it gives little leverage for takling the next analysis task.5.5.2 Ad-ho/Component Sums Based AnalysisAt the opposite end of the spetrum is the omponent-sums approah to analysis. Thisapproah simply glues together the results of the analysis of the piees omprising theoverall algorithm. This allows for the rapid synthesis of analytial omponents, but themanner in whih these omponents interat is not modeled and often diÆult to determine.112
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5.6 Experimental ResultsIn Setion 4.4, a number of variants and versions of the LU fatorization algorithm werepresented along with a disussion regarding the ode generated by the PLANALYZER. Inthis setion, the same intermediate-language form that is translated into C ode is insteadtransformed into a form of ode that serves to model the performane harateristis of theresultant program as it exeutes on the target arhiteture.5.6.1 Automated Analysis GenerationThe analysis presented in this experimental setion is numeri, not symboli, in nature,as it would require a good deal of analysis e�ort on the part of the author to determinewhether the analysis was orret in the latter ase. In order to evaluate the auray of theperformane estimates generated by the analysis engine, it was most expedient to omparethe numerial estimates generated with the witnessed empirial performane on the targetarhiteture.In essene, the analytial engine works by exeuting the analysis sripts that aregenerated along with the exeutable ode. The performane estimates for the leaves of thePFLAMBE software arhiteture were the result of a great deal of experiene with the ode-generation system and the omputational environment under study, but were not as preiseas benhmarks would have been. However, this level of detail would allow for a more rapidalteration of the analysis engine so as to produe symboli results, so was left as is. As wean see in the next subsetion, the estimates aurately reet the performane of smallerproblems as well as illustrating performane trends for eah of the ases examined.5.6.2 Analysis vs. Witnessed PerformaneIn all ases of omparison between estimated and witnessed performane inluded here, testswere performed on an 80 node Cray T3E (lonestar.hp.utexas.edu). While the algorithmswould have run on non-square omputational grids, only square grids of sizes 2� 2, 4� 4,and 8� 8 were tested. The same tests were performed in all ases with a few provisos. Theglobal size of the (square) matries tested ranged from order 32 to order: 4096, 8192, and16384 for the 4, 16, and 64 node ases, respetively. However, due to resoure limitations,some of the omputationally ineÆient algorithms were not tested with the largest matrixsizes. The analytial system would have predited the timeouts that ourred (one is givena maximal allotted time when one submits a job to the T3E), but it was not used for thispurpose.First, let us examine the predited and witnessed performane of the �ve variantslisted in Setion 4.4. These results are depited in line-graph form in Figure 5.6, Figure 5.8,and Figure 5.10 and in bar hart form in Figure 5.7, Figure 5.9, and Figure 5.11. The shadeof the bar indiates the quality of the estimation, with blak being used if the estimates aremore than 20% o�, gray for 10%-20% o� and white for an error of less than 10%.113
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Figure 5.6: Ratio of predited to ahieved performane: 4 node Cray T3E

Figure 5.7: Bar graph indiating ratio of predited to ahieved performane for 4 node CrayT3E. From left-to-right the bars orrespond to the Eager, Lazy, Row Lazy, Column Lazy,and Row-Column Lazy implementations. 114



www.manaraa.com

Figure 5.8: Ratio of predited to ahieved performane: 16 node Cray T3E

Figure 5.9: Bar graph indiating ratio of predited to ahieved performane for 16 nodeCray T3E. From left-to-right the bars orrespond to the Eager, Lazy, Row Lazy, ColumnLazy, and Row-Column Lazy implementations.115
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Figure 5.10: Ratio of predited to ahieved performane: 64 node Cray T3E

Figure 5.11: Bar graph indiating ratio of predited to ahieved performane for 64 nodeCray T3E. From left-to-right the bars orrespond to the Eager, Lazy, Row Lazy, ColumnLazy, and Row-Column Lazy implementations.116
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Now, we review the graphs orresponding to the ratios of predited/ahieved per-formane for the four building-blok algorithms (eager1, eager2, eager4, and eager5) andexamine the same information regarding those routines that utilize these omponents (ea-ger3a, eager3b, eager6a, eager6b, and eager6).Figure 5.12, Figure 5.13, and Figure 5.14) indiate the performane of the building-bloks desribed in Setion 4.4, while Figure 5.15, Figure 5.16, and Figure 5.17 utilize thesebuilding bloks as their subomponent LU fatorization.

Figure 5.12: Building bloks algorithms. Ratio of predited to ahieved performane: 4node Cray T3E5.6.3 Experiments: A SummaryThe studies in this hapter were intended to demonstrate the utility of FLAME as a methodin the ontext of the entire environment. While Setion 2.8.3 gave evidene that supportedFLAME's usefulness as both a pratial and pedagogial tool, the results given here areintended to lend support to the idea that muh of the FLAME method an be automatedand that suh mehanization would prove useful.This hapter also supplied evidene supporting the soundness of the onepts behindthe PLANALYZER. The automated part of the system proved apable of:1. Creating many ode instanes from the same sript input.2. Generating ode instanes that utilized hand-made sript speializations.3. Aurately determining the performane harateristis of a number of ode instanti-ations. 117
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Figure 5.13: Building bloks algorithms. Ratio of predited to ahieved performane: 16node Cray T3E

Figure 5.14: Building bloks algorithms. Ratio of predited to ahieved performane: 64node Cray T3E 118
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Figure 5.15: Algorithms utilizing building bloks. Ratio of predited to ahieved perfor-mane: 4 node Cray T3E

Figure 5.16: Algorithms utilizing building bloks. Ratio of predited to ahieved perfor-mane: 16 node Cray T3E 119
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Figure 5.17: Algorithms utilizing building bloks. Ratio of predited to ahieved perfor-mane: 64 node Cray T3E4. Using this information to hybridize a set of variants and/or version to ahieve superiorperformane.As these three goals are important when one is onstruting sienti� libraries, wethink that the prototype holds up well as a proof-of-onept. Within the PLANALYZER,the performane models ould be re�ned to give results that are more aurate or extendedto give results that are more meaningful.5.7 Chapter SummaryAs has already been disussed in this hapter, performane is usually a sought after hara-teristi in linear algebra odes. In the ase of library odes, this quality is even more highlyprized beause performane is far more important in the ase of an often-invoked routinethan in the ase of a routine that is exeuted only a few times.Of ourse, while the typial measure of performane is speed (i.e. the length of timethe routine requires in order to exeute), there are often other onerns. In some ases itis not just desirable, but vital to have a small memory footprint. Sine there are manyother axes by whih \quality" an be measured, the tools should be apable of handling anassortment of metris. Beause of the details of implementation, this work an be extendedto handle suh things. Further, the uni�ed nature of the development system failitatesrapid revision and speialized optimizations.120
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Chapter 6ConlusionGiven a limited amount of time and/or a language that is not domain-spei� and inexible,it is often the ase that one has to settle for the realization of less ambitious algorithms,little or no hybridization, one-of-eah routines (i.e. a monolithi software struture), anddeal with problems in ross-platform transportability.There are time and �nanial penalties involved when one utilizes ineÆient ode.Often, there is a potential trade-o�; greater resoures an be devoted to a problem in orderto bolster the shortomings of the omputational system. These an be in the form of humanor mahine resoures. However, trade-o�s are sometimes unavailable and are often ostly.In this dissertation, we present evidene that it is possible to reate a developmentsystem that helps one in dealing with these problems. In this hapter, we present, by topi,the problems addressed and lessened by the approah and implementation desribed here.6.1 Design: FLAMEWhile it is the only step in the development proess that is not automated, the design phaseis the ore of the system. By deriving algorithms in a systemati manner and expressingthem in a regimented form, we have the basis for automating the rest of the system. Thismethodology and the relatively uniform nature of the resultant algorithmi depitions fa-ilitate the generation of multiple routines with the same funtionality and, therefore, aneasier path to suh things as algorithmi hybridization.Similarly, targeting spei� levels of a omputational system by applying small mod-i�ations to a uniform approah allows for vertial integration. It failitates analysis sinesimilar annotations are appliable to similar routines throughout the hierarhy. Exampleareas where this methodology has shown its eÆay range from the bottom of the memorypyramid with ITXGEMM, through PFLAMBE, to the top, POOCLAPACK, a parallel,distributed, out-of-ore library.One example of an area where FLAME might prove useful in the future involves theuse of reursive data strutures for storing matries [48, 4, 46, 49℄. By storing matries by121
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bloks rather than row- or olumn-major ordering, data reuse in ahes an be enhaned.By ombining this with reursive algorithms that exploit this data struture, impressiveperformane improvements have been demonstrated. Reently, work at IBM's T.J. Watsonresearh enter and The University of Umea have shown the utility of a spei� type ofhierarhial desriptor/storage format for matries, namely reursive strutures that gohand-in-hand with reursive algorithms [29, 46℄.The rux of the design philosophy, as it relates to performane is that there are twoimportant harateristis of modern, parallel omputers: omputation and ommuniation.Virtually, all performane gains our in the optimization of a omputational or a ommu-niation routine when we view things \in the small." In a library built upon routines thatultimately rely on a very small matrix-matrix multiply kernel, virtually all of the speed-upstems from areful memory subsystem management. When onsidering an out-of-ore li-brary, there are more layers of memory to manage and the FLAME philosophy has been agreat aid in the onstrution of suh libraries.Many aspets of the derivational approah we have desribed are systemati: thegeneration of the loop-invariants, the derivation of the algorithm as well as the translationto ode. However, while we have muh evidene to suggest that mehanizing the proess isahievable, there is muh work ahead.We have demonstrated that the system presented in this doument ful�lls its po-tential by disussing how the tehnique has been applied to di�erent omputational envi-ronments.6.2 Language: PLAWrightThe end-user, using FLAME, should be able to enode algorithms rapidly, while introduingfew errors. Both of these issues are addressed by having a programming language thatis syntatially similar to the language of design. If the designer and the programmerare one and the same, this \proximity" is useful beause it minimizes the possibility of amistranslation between the two forms of the algorithm. If the implementor and designer aretwo distint entities, this resemblane of form has an additional advantage, namely, lesseningthe likelihood of a misinterpretation of the design before it is translated into input for thesystem.Enapsulated, the bene�ts of the PLAWright programming language are:1. It losely resembles the language of the algorithms.2. It an be written at a very high level or at a lower level.3. The transition from general to speialized is both smooth and exible.4. It an be desribed using typial ompiler formalizations.
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6.3 Automated Code Generation: PLANalyzerTypially, the onstrution of a linear algebra library requires the implementation of a largenumber of algorithms. The derivation proess advaned in this work is appliable to thosealgorithms at the ore of dense linear algebra, exhibits a systemati nature that lends itselfto rapid derivation, and produes algorithms in a form that an be mehanially translatedinto input for the PLANALYZER ode prodution tool. Similarly, the ode manufaturingsystem an address the same spetrum of algorithms as the derivation system, is mehanial,and is relatively fast. Therefore, algorithmi overage an be quikly ahieved by one familiarwith the derivation methodology.In the best of all possible worlds, the automatially generated ode would also beprovably orret. Given the formal approah provided by FLAME and the nature of theode generation failities presented in Chapter 4 of this dissertation, we think that this ispossible for the domain-spei� language presented in Chapter 3.A domain-spei� language provides a set of high-level operations that are onve-nient for a spei� domain. If we formalize the syntax and semantis of a domain-spei�language, then we an use formal methods to prove that a program written in a domain-spei� language is orret. That the implementation of the domain-spei� language isorret is an orthogonal issue, related to low-level ompiler veri�ation, and ably handledby others.Towards this end, a ollaborative e�ort with Dr. Panagiotis Manolios targets thefollowing:1. Proving that for any PLAWright ode, the PLANALYZER's output is a legal PLA-PACK program with the same semantis as that of the input sript.2. Applying tati-based theorem proving to onstrut a system that utilizes both theinput and output of the integrated PLANALYZER system and, on a per instanebasis, reates proofs of orretness.6.4 Automated Analysis: plANALYZERPerformane is one of the paramount onerns in the area of linear algebra library onstru-tion. There are three interrelated faets of this issue that need to be dealt with: modeling theenvironment, evaluating the performane estimates, and using the result of the evaluation.All three issues have been dealt with by the system desribed in this dissertation.It is rarely the ase that the ode that ahieves optimal performane on one arhi-teture will perform as admirably on another. It is therefore a ommon goal to have odethat is performane portable aross various systems. The work presented here inludes theuse of a high-level language in onjuntion with analysis tehnology. This failitates theprodution of performane transportable ode.
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6.5 An Integrated System: FLAME and PLANALYZERTo onstrut a linear algebra library one must design and implement the algorithms thatmust be available to the library user and make them as eÆient as possible. FLAMEprovides a systemati means for deriving the variants of suh algorithms. The PLAWrightompiler allows for rapid prototyping. Automati generation of the ode orresponding tothe PLAWright sript is handled by the ompiler (PLAN) omponent of the PLANALYZER.Finally, the analytial (ANALYZER) omponent of the system yields information regardingthe performane harateristis of the produed ode, opening the door for hybridization.We have explored the development of all of the onepts and tools neessary for amethodial hybridization of a linear algebra library and believe that we have made a strongase for the soundness of the approah presented in this dissertation.
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